Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числапомогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.

Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 x arcsin x arccos x
град. рад. град. рад.
– 1 – 90° 180° π
– 60° 150°
– 45° 135°
– 30° 120°
90°
30° 60°
45° 45°
60° 30°
1 90°

≈ 0,7071067811865476 ≈ 0,8660254037844386

Видео

Арксинус

Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:

Прямая может пересечь окружность сразу в двух точк

Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:

Арксинус может быть вычислен и для отрицательного

Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:

При значениях а, равных (– 1) и 1, точка пересечен

При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):

Таким образом, арксинус может принимать значения и

Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:

Получается, что областью определения арксинуса явл

Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].

Дадим определение арксинусу:

Задание. Чему равен arcsin0,5?

Задание. Чему равен arcsin0,5?

Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.

Для вычисления арксинусов отрицательных углов испо

Для вычисления арксинусов отрицательных углов используется формула

Справедливость этой формулы очевидна из картинки:

Справедливость этой формулы очевидна из картинки:

Задание. Вычислите arcsin (– 0,5).

Задание. Вычислите arcsin (– 0,5).

Решение. Используем формулу для арксинуса отрицательного числа:

Решение уравнения cosx = a

Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:

По определению арккосинуса очевидно, что arccos 0,

По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь

Так как arccos 0,5 = π/3, то мы находим очевидный

Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:

Значит ли это, что мы решили ур-ние? Нет, ведь мы

Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:

Видно, что есть ещё одна точка пересечения, соотве

Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:

Здесь мы использовали тот факт, косинус – четная ф

Здесь мы использовали тот факт, косинус – четная функция, то есть

Итак, число – π/3 также является корнем ур-ния. Ес

Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:

Оказывается, прямая пересекает график в бесконечно

Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть

Поэтому, если число π/3 является решением ур-ния,

Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:

Запись «π/3+ 2πn» называется серией решений. Она в

Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение

При n = 5 получим корень

При n = 5 получим корень

При n = – 10 у нас получится решение

При n = – 10 у нас получится решение

Однако помимо серии х = π/3 + 2πn решениями ур-ния

Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:

Действительно, число (– π/3) является корнем, но н

Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень

Итак, решением ур-ния являются две серии решений.

Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:

Объединить же обе серии можно одной записью:

Объединить же обе серии можно одной записью:

Напомним, что мы решали ур-ние

Напомним, что мы решали ур-ние

и получили для него решение

и получили для него решение

Число π/3 появилось в записи по той причине, что a

Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид

где а – некоторое число, его решением будут все та

где а – некоторое число, его решением будут все такие х, что

Для краткости запись «n– целое число» заменяют экв

Для краткости запись «n– целое число» заменяют эквивалентной записью

«n ∈ Z»

Напомним, что буквой Z обозначают множество целых чисел.

Задание. Решите ур-ние

Решение. Вспомним, что

Решение. Вспомним, что

Задание. Решите ур-ние

Задание. Решите ур-ние

Решение. В таблице стандартных углов нет такого чи

Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:

Иногда встречаются задачи, в которых надо не прост

Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.

Задание. Укажите три наименьших положительных корня ур-ния

Решение. Так как

Решение. Так как

то все решения образуют две серии:

то все решения образуют две серии:

Начнем подставлять вместо n целые числа и выпишем

Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.

Для первой серии:

Для второй серии:

Для второй серии:

Отметим все найденные корни на координатной прямой

Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):

Видно, что тремя наименьшими положительными корням

Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4

Ответ: π/4, 7π/4 и 9π/4.

Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния

На графике видно, что этим значениям х соответству

На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния

являются точки, в которых график пересекает ось Ох

являются точки, в которых график пересекает ось Ох:

Отдельно отметим, что если правая часть в ур-нии –

Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделит

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = – arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккосинус, arccos

Определение и обозначения

Арккосинус ( y = arccos x )
 – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  0 ≤ y ≤ π. cos(arccos x) = x     ; arccos(cos x) = x     .

Арккосинус иногда обозначают так: .

График функции арккосинус

График функции   y = arccos  x
График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном arcsin α= π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:

arccos α=π2arcsin α=π2(π12)=7π12.

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение ,9511, после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса ,9511  определяем,

При поиске значения арктангенса ,9511  определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Всё ещё сложно? Наши эксперты помогут разобраться Все услуги

Теги

Популярные:

Последние:

Adblock
detector