Содержание материала
- Среднее и мгновенное ускорение
- Видео
- Среднее ускорение
- Подробнее о скорости: что же это такое
- Смотрим на спидометр: мгновенная скорость
- Движемся постоянно: равномерная скорость
- Движемся вперед и назад: неравномерное движение
- Жмем на секундомер и определяем среднюю скорость
- Средняя скорость и неравномерное движение
- Как рассчитать ускорение: формулы
- Для прямолинейного движения
- Для равноускоренного движения
- Для равнозамедленного движения
- Нахождение ускорения через массу и силу
- Измерение ускорения
- Единицы измерения ускорения
Среднее и мгновенное ускорение
Среднее ускорение материальной точки на некотором промежутке времени — это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:
\( \lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)
Мгновенное ускорение материальной точки в некоторый момент времени — это лимит его среднего ускорения при \( \Delta t \to 0 \). Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:
\( \vec a = \dfrac {d\vec v} {dt} \)
Видео
Среднее ускорение
Среднее ускорение — это отношение изменения скорости к промежутку времени, за который это изменение произошло.
\(\overrightarrow{a_{ср}}=\frac{\triangle\overrightarrow V}{\triangle t}\), где \(\overrightarrow{a_{ср}}\) — среднее ускорение, \(\triangle\overrightarrow V\) — изменение скорости, \( \triangle t\) — изменение времени.
Подробнее о скорости: что же это такое
Наверняка вам известно из опыта, что скорость определяется следующим образом:
скорость = расстояние/время.
Например, если расстояние \( s \) пройдено за время \( t \), то скорость \( v \) равна:
Переменная \( v \) обозначает только величину скорости, но истинная скорость также имеет направление (более подробно это описывается в главе 4). Иначе говоря, скорость является вектором (векторы обычно обозначаются полужирным начертанием, например \( \mathbf{v} \)). Векторы обладают величиной и направлением, т.е., зная скорость, мы знаем не только быстроту, но и направление движения. Аналогично, перемещение в более общем смысле является вектором, т.е. характеризуется не только величиной, но и направлением смещения (более подробно векторы описываются в главе 4).
Достаточно просто, не так ли? Точнее говоря (физики очень любят точность), скорость равняется изменению положения, деленному на изменение времени. Потому скорость движения вдоль оси X можно выразить следующим образом:
В реальном мире скорость может принимать очень разные формы, некоторые из них описываются в следующих разделах.
Смотрим на спидометр: мгновенная скорость
Итак, у нас уже есть общее представление о скорости. Именно ее измеряет спидометр автомобиля, не так ли? Когда вы катите по прямолинейному шоссе, все, что нужно делать, — всего лишь следить за показаниями спидометра. “Уже 140 километров в час. Пожалуй, сбросим скорость до 120”. Именно так мы часто поступаем в жизни, а иначе говоря, так мы определяем мгновенную скорость.
Понятие мгновенной скорости играет важную роль в понимании физических процессов. В данный момент времени спидометр показывает 120 километров в час, значит, ваша мгновенная скорость равна именно этой величине. Если вы ускоритесь до 150 километров в час, то ваша мгновенная скорость станет равной этой новой величине. Мгновенная скорость — это скорость в данный момент времени. Спустя две секунды мгновенная скорость может стать совершенно другой.
Движемся постоянно: равномерная скорость
А что если долгое время автомобиль едет со скоростью 120 километров в час? В физике эта скорость называется равномерной (или постоянной), а в жизни она возможна только при движении на абсолютно ровных и прямолинейных дорогах, когда долгое время можно поддерживать движение без изменения скорости.
Равномерное движение с постоянной скоростью является простейшим видом движения, поскольку оно никак не меняется.
Движемся вперед и назад: неравномерное движение
Название этого типа движения говорит само за себя: неравномерное движение означает движение со скоростью, меняющейся со временем. Именно с такой скоростью мы чаще всего сталкиваемся в повседневной жизни. Вот как выглядит уравнение изменения скорости от исходной скорости \( v_1 \) до конечной скорости \( v_0 \):
Остальная часть этой главы посвящена ускорению, которое характеризует неравномерность движения.
Жмем на секундомер и определяем среднюю скорость
Выражение со скоростями не так уж неосязаемо, как может показаться. Измерения скорости можно сделать более конкретными. Допустим, что вам хочется совершить путешествие из Нью-Йорка в Лос-Анджелес, которые находятся на расстоянии около 2781 миль друг от друга. Если предположить, на это путешествие ушло 4 суток, то какой была ваша скорость?
Скорость можно найти, если поделить пройденное расстояние на затраченное на это время:
Итак, результат 695,3 получен, но в каких единицах он выражен?
В этом выражении мили делятся на сутки, т.е. результат равен 695,3 милям в сутки. Это не совсем стандартная единица измерений и вполне естественно было бы поинтересоваться: а сколько это миль в час? Для ответа на этот вопрос нужно перевести сутки в часы, как показано в главе 2. Поскольку в сутках 24 часа, то получим следующий результат:
Итак, получен более понятный результат 28,97 миль в час. Смущает лишь столь малая величина скорости, ведь обычно машины едут со скоростью в 2-3 раза быстрее, однако среднюю скорость для всего путешествия мы вычислили, разделив все расстояния на все время, включая время отдыха.
Среднюю скорость часто обозначают с помощью штриха над переменной: \( \overline{v} \) .
Средняя скорость и неравномерное движение
Средняя скорость отличается от мгновенной, если только вы не движетесь равномерно, когда скорость вообще не меняется. А средняя скорость неравномерного движения, когда все расстояние делится на все время, может отличаться от мгновенной скорости.
Путешествуя из Нью-Йорка в Лос-Анджелес, вам наверняка придется провести несколько ночей в отелях, и во время вашего отдыха мгновенная скорость автомобиля равна 0 миль в час, а средняя скорость — 28,97 миль в час! Дело в том, что средняя скорость получена в результате деления всего расстояния на все время.
Средняя скорость может зависеть от фактически пройденного пути. Допустим, что, путешествуя по штату Огайо, вы решили подвезти попутчика в штат Индиана и погостить у вашей сестры в штате Мичиган. Все путешествие может иметь вид, показанный на рис. 3.3: первые 80 миль — в штат Индиана, а потом 30 миль — в штат Мичиган.
Если ехать со скоростью 55 миль в час, то для преодоления всего пути длиной 80 + 30 = 110 миль потребуется 2 часа. Но если взять расстояние по прямой между начальной и конечной точкой путешествия, которое равно 85,4 миль, то средняя скорость будет равна:
Таким образом, получена средняя скорость для расстояния от начальной до конечной точки путешествия вдоль пунктирной линии. Но если вам нужно определить скорость для каждого из двух отрезков фактически пройденного пути, то нужно измерить длину каждого из двух отрезков и разделить их на время их прохождения.
При движении с равномерной скоростью это можно сделать легко и просто, поскольку в таком случае средняя скорость равняется мгновенной скорости в любой точке пути.
Изучая движение, нужно учитывать не только скорость, но и направление движения. Именно по этой причине огромное значение имеет понятие вектора скорости. Более подробно векторы описываются в главе 4.
Как рассчитать ускорение: формулы
Для прямолинейного движения
Прямолинейное движение — механическое движение, при котором траектория тела — прямая линия.
В этом случае ускорение находится по следующим формулам:
\(a\;=\;\frac{\mathrm V}t\)
\(a\;=\;\frac{2S}{t^2}\)
\(a\;=\;\frac{V^2}{2S}\)
Где \(a\) — достигнутое ускорение тела, \(S\) — пройденный путь (расстояние), \(t\) — затраченное время.
Время отсчитывается от начала движения тела.
При прямолинейном равномерном движении ускорение по модулю равняется нулю.
Для равноускоренного движения
Равноускоренное движение — прямолинейное движение с постоянным положительным ускорением (разгон).
При таком виде движения ускорение определяется по формуле: \(a\;=\;\frac{V-V_0}t\), где \(V_0\) и \(V\) начальная и конечная скорости соответственно, \(a\) — достигнутое ускорение тела, \(t\) — затраченное время.
Для равнозамедленного движения
Равнозамедленное движение — прямолинейное движение с постоянным отрицательным ускорением (замедление).
При таком виде движения ускорение находим по формуле: \(a\;=-\;\frac{V-V_0}t\), где V и V начальная и конечная скорости соответственно, a — достигнутое ускорение тела, t — затраченное время.
Нахождение ускорения через массу и силу
Принцип инерции Галилея:
Если не действовать на тело, то его скорость не будет меняться.
Система отсчета (СО) — система координат, точка отсчета и указание начала отсчета времени.
Инерциальная система отсчета (ИСО) — это СО, в которой наблюдается движение по инерции (соблюдается принцип инерции).
II закон Ньютона:
В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
или
\(\overrightarrow a=\frac{\overrightarrow F}m\)
Измерение ускорения
Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с2 за каждую секунду изменяет свою скорость на 1 м/с.
Единицы измерения ускорения
- метр в секунду в квадрате, м/с², производная единица системы СИ
- сантиметр в секунду в квадрате, см/с², производная единица системы СГС