Синус угла — sin(A)

Тригонометрический круг

Углы в радианах

Для математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2πr. Следовательно 360° в радианах равно 2π, а 180° равно π радиан.

Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π.

Например, для угла 90° будет 90°180°· π = 12π

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Видео

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь с другими тригонометрическими функциями:

— косинусом того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\) — тангенсом и косинусом того же угла (или числа): формулой \(tg⁡x=\)\(\frac{\sin⁡x}{\cos⁡x}\) — котангенсом того же угла (или числа): формулой \(1+сtg^2⁡x=\)\(\frac{1}{\sin^2⁡x}\) Другие наиболее часто применяемые формулы смотри здесь.

Как считать коэффициенты

В википедии, в статье про полиномы Чебышёва есть фраза: «Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в интерполяции алгебраическими многочленами«. Это как раз наш случай.

Посмотрим ещё раз на их графики:

Голубая линия (полином 2-й степени) пересекает ось

Голубая линия (полином 2-й степени) пересекает ось абсцисс (y=0) в двух точках x = ±0.7071. Оранжевая (3-й степени) — в трёх точках: x = 0 и x = ±0.866. Это и есть корни полиномов, они будут использованы «в качестве узлов в интерполяции».

Ещё небольшое отступление, как представлять аргументы. На 32-битных процессорах полный период (круг) удобно представить как 232 (0x100000000), а угол, соответственно, в диапазоне от до 0xffffffff. Если количество интервалов аппроксимации, на которые разбит круг, равно 2n, то угол можно интерпретировать как двоичное число с фиксированной точкой. Например, при разбиении на 64 интервала (26), угол будет интерпретироваться как число размерности 6.26. Здесь старшие 6 бит — это номер интервала (считая от нуля), а младшие 26 бит — смещение внутри него.

Возьмём, для примера, угол 15°. Если вычислить 15°/360° · 232, то получим 0000_1010_1010_1010_1010_1010_1010_1011 в двоичном виде. В размерности 6.26 будет выглядеть как 000010.10101010101010101010101011. Здесь первые 6 бит 000010 — это десятичное 2 (2-й интервал), а оставшиеся 26 10101010101010101010101011, будучи поделены на 226, дадут 0.66666667 — это смещение внутри интервала. То же самое получим: 2.66666667 = 64 * 15/360.

Смещение внутри интервала лежит в диапазоне 0.0 ≤ x < 1.0. К нему же надо привести корни многочленов Чебышёва, которые находятся между -1 и +1. Корни полинома 2-й степени превратятся 0.14645 и 0.85355, 3-й степени — 0.066987, 0.5 и 0.933013.

Теперь давайте найдём коэффициенты A0, A1 и т.д. При аппроксимации полиномом 1-й степени y = A1·x + A0 нам нужно, что бы на заданном интервале с номером N в точке со смещением 0.14645 целевое значение было равно y=sin((N + 0.14645)/64 * 2π), а в точке 0.85355 — y=sin((N + 0.85355)/64 * 2π). Это делается при помощи системы из двух линейных уравнений с 2 неизвестными A1 и A0:

A1·0.14645 + A0 = sin((N + 0.14645)/64 * 2π)
A1·0.85355 + A0 = sin((N + 0.85355)/64 * 2π)

Для интервала N=2 (где находится 15°), получаем: A1 = 0.09521 и A0 = 0.19523.

Пройдясь по всем N, от 0 до 63, получим таблицу с наборами коэффициентов A1 и A0. С ней уже можно считать синус с точностью 10.7 бит. Как это делать, расскажу ниже (если кто до сих пор не понял сам).

Перейдём ко 2-й степени y = A2·x² + A1·x + A0. В качестве аргумента x подставим, соответственно, корни полинома 3-й степени 0.066987, 0.5 и 0.933013. Напишем систему из 3 уравнений с 3 неизвестными A2, A1 и A0:

A2·0.066987² + A1·0.066987 + A0 = sin((N + 0.066987)/64 * 2π)
A2·0.5² + A1·0.5 + A0 = sin((N + 0.5)/64 * 2π)
A2·0.933013² + A1·0.933013 + A0 = sin((N + 0.933013)/64 * 2π)

Решения для интервала N=15 будут следующие:

A2 = -0.004812613
A1 = +0.009628370
A0 = +0.995184425

Обратите внимание на A2 и A1. Если их умножить 27 и 26 соответственно, то их значения всё равно будет лежать в пределах от -1 до +1. Интервал №15 я выбрал не случайно — на нём значение A0 максимально и близко к 1.

Вообще, в большинстве случаев коэффициенты при больших степенях можно увеличить на некий коэффициент. При целочисленных операциях это уменьшит погрешность вычислений, а на Cortex-M3 к тому же сократит их время — об этом я расскажу ниже.

Для вычисления таблиц других размеров в предыдущую систему уравнений вместо 64 нужно подставить нужный размер. Для аппроксимации полиномом степени P нужно найти корни полинома Чебышёва степени P+1, и записать систему из P+1 уравнений с P+1 неизвестными, не забывая возводить корень многочлена в нужную степень ‘n’ при каждом An. (Если предыдущее предложение непонятно, то ничего страшного. Ближе к концу статьи будет ссылка на готовый генератор таблиц и краткая инструкция к нему.)

Табличные значения синуса и косинуса

Нулевой угол \( \LARGE 0^{\circ } \)

Абсцисса точки равна 1, ордината точки равна . Следовательно,

cos 0 = 1   sin 0 = 0

Рис 4. Нулевой угол

Угол \( \LARGE \frac{\pi}{6} = 30^{\circ } \)

Мы видим прямоугольный треугольник с единичной гипотенузой и острым углом 30°. Как известно, катет, лежащий напротив угла 30°, равен половине гипотенузы1; иными словами, вертикальный катет равен 1/2 и, стало быть,

\[ \sin \frac{\pi}{6} =\frac{1}{2} \]

Горизонтальный катет находим по теореме Пифагора (или, что то же самое, находим косинус по основному тригонометрическому тождеству):

\[ \cos \frac{\pi}{6} = \sqrt{1 — \left(\frac{1}{2} \right)^{2} } =\frac{\sqrt{3} }{2} \]

1 Почему так получается? Разрежьте равносторонний треугольник со стороной 2 вдоль его высоты! Он распадётся на два прямоугольных треугольника с гипотенузой 2, острым углом 30° и меньшим катетом 1.

Рис 5. Угол π / 6

Угол \( \LARGE \frac{\pi}{4} = 45^{\circ } \)

В данном случае прямоугольный треугольник является равнобедренным; синус и косинус угла 45° равны друг другу. Обозначим их пока через x. Имеем:

\[ x^{2} + x^{2} = 1 \]

откуда \( x=\frac{\sqrt{2} }{2} \). Следовательно,

\[ \cos \frac{\pi}{4} = \sin \frac{\pi}{4} =\frac{\sqrt{2} }{2} \]

Рис 5. Угол π / 4

Свойства синуса и косинуса

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n — целое).

y = sin x y = cos x
Область определения и непрерывность – ∞ < x < + ∞ – ∞ < x < + ∞
Область значений 1 ≤ y ≤ 1 1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = –1
Нули, y =
Точки пересечения с осью ординат, x = y = y = 1

Синус числа

Числовая окружность позволяет определить синус любого числа, но обычно находят синус чисел как-то связанных с Пи: \(\frac{π}{2}\), \(\frac{3π}{4}\), \(-2π\).

Например, для числа \(\frac{π}{6}\) — синус будет равен \(0,5\). А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).

Подробнее как вычисляется синус разных чисел можно прочитать в этой статье.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от  до +

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

\( y = \arcsin x \) \( \left\{ -1 \leqslant x \leqslant 1; \; — \dfrac{\pi}2 \leqslant y \leqslant \dfrac{\pi}2 \right\} \)\( \sin( \arcsin x ) = x \) \( \{ -1 \leqslant x \leqslant 1 \} \)\( \arcsin( \sin x ) = x \) \( \left\{ — \dfrac{\pi}2 \leqslant x \leqslant \dfrac{\pi}2 \right\} \)

Теги

Популярные:

Последние: