Расстояние между двумя прямыми. Метод координат. Задание 14

Расстояние между прямыми

Рассмотрим задачу аналитической геометрии об определении расстояния между двумя скрещивающимися прямыми. Пусть первая прямая описывается каноническими уравнениями , где — координаты точки , лежащей на прямой, а — координаты направляющего вектора . Соответственно, вторая прямая описывается уравнениями , где — координаты точки , лежащей на прямой , а — координаты направляющего вектора . Искомым кратчайшим расстоянием между прямыми является длина их общего перпендикуляра . Для его нахождения построим параллелепипед, ребрами которого являются вектора и (см. рисунок). Очевидно, что искомое расстояние будет равно высоте параллелепипеда. Как известно, объем параллелепипеда определяется как произведение площади основания на высоту, то есть .                (1) Основанием параллелепипеда является параллелограмм. Его площадь равна модулю векторного произведения векторов, которые этот параллелограмм образуют. То есть .               (2) Подставляя (2) в (1), и выражая , имеем .                (3) Известно, что объем параллелепипеда равен модулю смешанного произведения векторов, на которых построен параллелепипед. То есть .                (4) Подставляя (4) в (3) окончательно получаем .                (5) Итак, формула для нахождения расстояния между двумя скрещивающимися прямыми получена. Рассмотрим ее применение на конкретном примере. рис. Пример . Найти расстояние между прямыми и . Решение . Из условия . Составим вектор , вычитая от координат конечной точки, координаты начальной точки. Получим . Далее, применяем формулу для нахождения смешанного произведения в координатной форме . Таким образом, . Переходим к вычислению знаменателя выражения (5). По формуле векторного произведения в координатной форме находим Далее, по известной формуле находим длину вектора . Тогда, подставляя найденные значения в формулу (5), окончательно получаем .

Последнее изменение: Wednesday, 10 June 2015, 11:40

Видео

Задачи на перпендикуляры, наклонные, расстояния

Рассмотрим несколько задач, в каждой из которых рассматривается куб АВСDEFGH. При этом предполагается, что ребро такого куба имеет длину, равную единице.

Задание. В кубе АВСDEFGH найдите расстояние между точкой А и гранью CDHG:

Решение. Ребро AD перпендикулярно грани DH (так ка

Решение. Ребро AD перпендикулярно грани DH (так как AD⊥DH и AD⊥CD). Поэтому как раз АD и является расстоянием между А и СDHG. Значит, оно равно единице.

Ответ: 1.

Примечание. Для решения следующих задач запомним, что ребро DH перпендикулярно грани АВСD. Вообще в кубе все ребра, пересекающиеся с гранями, перпендикулярны таким граням.

Задание. Найдите в кубе расстояние между вершиной А и плоскостью BDH:

Решение. Проведем на грани АВСD перпендикуляр АК и

Решение. Проведем на грани АВСD перпендикуляр АК из А к прямой BD:

Докажем, что АК – перпендикуляр в BDH. Для этого н

Докажем, что АК – перпендикуляр в BDH. Для этого надо найти две прямые в BDH, перпендикулярные АК. Первая такая прямая – это BD (мы специально провели АК⊥BD). Вторая такая прямая – это DH. Действительно, DH перпендикулярна всей грани АВСD, а значит, и прямой АК.

Теперь найдем длину АК. Ее можно вычислить из прямоугольного ∆АКD. В нём ∠ADB =45°, ведь это угол между стороной квадрата АВСD и его диагональю.

Найти АК можно с помощью тригонометрии в ∆АКD:

Задание. Найдите расстояние от H до плоскости EDG:

Задание. Найдите расстояние от H до плоскости EDG:

Решение. Обозначим середину отрезка ЕD буквой М.Да

Решение. Обозначим середину отрезка ЕD буквой М.Далее в ∆МНG опустим высоту из НК на сторону MG:

Попытаемся доказать, что HK – это перпендикуляр к

Попытаемся доказать, что HK – это перпендикуляр к EDG. Заметим, что ∆HDG и ∆EHG равны, ведь у них одинаковую длину имеют ребра DH, EH, ребро GH – общее, а ∠DHG и ∠EHG прямые. Тогда одинаковы отрезки EG и DG. Это означает, что ∆EGD – равнобедренный.

В ∆EGDMG– это медиана. Так как ∆EGD – равнобедренный, то MG одновременно ещё и высота, поэтому MD⊥MG.

Аналогично ∆EHD– равнобедренный (EH = HD), а потому MH в нем – и медиана, и высота. Поэтому MD⊥MH.

Получили, что MD перпендикулярен и MH, и MG, то есть двум прямым в плоскости MHG. Тогда MD перпендикулярен всей плоскости MHG, и, в частности, отрезку HK: HK⊥MD.

Но также MD⊥MG. Получается, KH перпендикулярен двум прямым в плоскости EDG, и потому он является перпендикуляром к плоскости EDG. Значит, именно его длину нам и надо найти.

Рассмотрим ∆MDH. Он прямоугольный, а ∠MDH = 45° (угол между стороной и диагональю квадрата). Тогда длину MH можно найти так:

Так как ребро GH перпендикулярно грани АЕНD, то ∆M

Так как ребро GH перпендикулярно грани АЕНD, то ∆MHG – прямоугольный. Тогда по теореме Пифагора можно найти MG:

Далее можно найти HK разными способами, но проще в

Далее можно найти HK разными способами, но проще воспользоваться подобием ∆MHG и ∆MKH. Они оба – прямоугольные, и у них есть общий угол ∠KMH, этого достаточно для подобия треугольников. Записываем пропорцию:

Здесь слева записано отношение сторон, лежащих про

Здесь слева записано отношение сторон, лежащих против ∠KMH, а справа – отношение сторон, лежащих против прямых углов (то есть отношение гипотенуз). Используем пропорцию дальше:

Задание. Найдите расстояние между прямыми ВС и DH:

Задание. Найдите расстояние между прямыми ВС и DH:

Решение. ВС и DH – скрещивающиеся. Надо найти общи

Решение. ВС и DH – скрещивающиеся. Надо найти общий перпендикуляр к ним. В данном случае он очевиден – это отрезок CD. Действительно, CD⊥ВС как стороны квадрата АВСD, но и DH⊥CD как стороны в другом квадрате, СDHG.. Длина же ребра CD равна единице, ведь у куба все ребра одинаковы.

Ответ: 1.

Задание. Каково расстояние между прямыми ВС и DG:

Решение.На грани СDHG опустим из С перпендикуляр С

Решение.На грани СDHG опустим из С перпендикуляр СК на диагональ GD:

Будет ли СК являться расстоянием между ВС и DG? Яс

Будет ли СК являться расстоянием между ВС и DG? Ясно, что СК⊥DG. При этом ребро ВС перпендикулярно грани СGHD, так как ВС⊥СG и ВС⊥СD. Значит, также ВС⊥СК. То есть СК – общий перпендикуляр к ВС и DG, и по определению как раз и является искомым расстоянием.

Длину СК найдем из прямоугольного ∆СKG. ∠СGK составляет 45°, ведь это угол между диагональю DG и стороной квадрата СG. Тогда можно записать:

Задание. Найдите расстояние между ребрами АВ и HG:

Задание. Найдите расстояние между ребрами АВ и HG:

Решение. Здесь ребра АВ и HG параллельны, так как

Решение. Здесь ребра АВ и HG параллельны, так как каждая их них параллельна ребру CD. Проведем отрезок АН. Так как и АВ, и HG перпендикулярны грани АЕНD, то эти ребра одновременно перпендикулярны и АН. То есть АН – общий перпендикуляр к АВ и HG, и поэтому именно его длину и надо найти.

Сделать это можно из прямоугольного ∆АНD, в котором ∠НАD составляет 45°:

Задание. Чему равно расстояние между ребром AB и д

Задание. Чему равно расстояние между ребром AB и диагональю FD:

Решение. Пусть А1, D1, H1 и Е1 – середины реб

Решение. Пусть А1, D1, Hи Е1 – середины ребер АВ, DC, HG, и EF соответственно. Проведем через А1, D1, Hплоскость. Диагональ FD пересечет ее в какой-нибудь точке К:

Сначала покажем, что плоскости α и ADH (то есть ни

Сначала покажем, что плоскости α и ADH (то есть нижняя грань) параллельны.

Заметим, что в четырехугольнике АА1D1D стороны АА1 и DDпараллельны (ведь они лежат на сторонах квадрата АВСD) и одинаковы (ведь они составляют половину от длины ребер АВ и CD, то есть имеют длину 0,5). Тогда АА1D1D – параллелограмм. Более того, раз у него есть прямые углы ∠А1АDи ∠АDD1, то можно утверждать, что АА1D1D – прямоугольник. Тогда АD||A1D1. Аналогично можно показать, что DHH1D– прямоугольник, и DH||D1H1.

Далее можно действовать разными способами. Первый способ – это использование признака параллельности плоскостей (теорема 9 из этого урока). Так как в α есть пересекающиеся прямые А1D1и D1H1, а в плоскости ADH находятся прямые AD и DH, и АD||A1D1, и DH||D1H1, то по этому признаку α||ADH.

Однако, если этот признак вдруг оказался «забыт», то можно использовать отрезок DD1. Он перпендикулярен и грани ADHE, и плоскости α, ведь в каждой из них есть по две прямых, перпендикулярных ему. Это AD и DH на грани ADHE и A1D1и D1Hв α. Тогда α и ADH перпендикулярны одной и той же прямой, а потому они параллельны. Так или иначе, мы выяснили, что α||ADH.

Отсюда вытекает, что α должна проходить через середину Е1. Действительно, расстояние между параллельными плоскостями не зависит от выбора точек измерения. В данном случае оно равно отрезку АА1, то есть 0,5. Но FE– это также общий перпендикуляр к α и ADH. Значит, α пересекает FE в точке, находящейся на расстоянии 0,5 от Е. А это как раз и есть середина FE, то есть точка Е1.

Далее докажем, что точка К, в которой прямая FD пересекает α – это середина отрезка Е1D1. Для этого удобно отдельно показать плоскость, проходящую через параллельные ребра FE и CD, то есть четырехугольник FEDC:

Заметим, так как ребра FE и CD перпендикулярны вер

Заметим, так как ребра FE и CD перпендикулярны верхней и нижней грани, то они перпендикулярны и отрезкам FC и ED, то есть FEDC прямоугольник. Тогда FC||ED, и ∠Е1FD = ∠D1DF (накрест лежащие углы при секущей FD). ∠FKEи ∠DKD1 одинаковы уже как вертикальные углы. Тогда ∆FKE1 и ∆DKDподобны по 2 углам. Но отрезки FEи DDодинаковы как половины равных ребер FE и CD. Получается, что ∆FKEи ∆DKDравны, и поэтому Е1К = KD1. Это и значит, что К – середина Е1D1.

Также отметим, что Е1D1 – диагональ в четырехугольнике А1Е1Н1D1. Докажем, что А1Е1Н1D – это квадрат. Ранее мы уже показали, что АА1D1D и DHH1D1 – прямоугольники. Аналогично можно продемонстрировать, что прямоугольниками являются также АА1Е1Е и ЕЕ1Н1Н. Из этого вытекает равенство сторон:

То есть в А1Е1Н1D1 все стороны одинаковы, и э

То есть в А1Е1Н1Dвсе стороны одинаковы, и эта фигура – ромб. Теперь надо показать, что и углы в этом четырехугольнике составляют 90°. Продемонстрируем это на примере ∠А1D1H1. AD⊥CDHG и AD||A1D1, поэтому А1D1⊥CDHG. Значит, также А1D перпендикулярна любой прямой на грани CDHG, в том числе и D1H1. То есть ∠А1D1H1 = 90°. Но если в ромбе хотя бы один угол прямой, то он является квадратом.

Итак, мы выяснили, что А1Е1Н1D1 – квадрат, а К – середина его диагонали Е1D1. Получается, что К – точка пересечения диагоналей квадрата А1Е1Н1D1, ведь эта точка пересечения как раз делит диагонали пополам.

Теперь мы можем наконец доказать, что А1К – это и есть искомое расстояние. Действительно, так как АВ – перпендикуляр к α, та А1К принадлежит α, то А1К⊥АВ. Но как же доказать, что А1К⊥FD. Здесь поможет теорема о трех перпендикулярах. Е1К – это проекция FK на α, и Е1К⊥А1К, ведь диагонали квадрата пересекаются под прямым углом. Раз отрезок А1К перпендикулярен проекции, то он перпендикулярен и самой наклонной, то есть А1К⊥FK.

Осталось лишь вычислить длину А1К. Для этого по аналогии с предыдущими задачами используем прямоугольный∆А1Е1К, в котором ∠А1Е1К = 45°:

Отвлечемся от куба и рассмотрим другую задачу.

Отвлечемся от куба и рассмотрим другую задачу.

Задание. В ∆АВС вписана окружность. Через центр этой окружности (точку О) проведена прямая ОН, причем она перпендикулярна плоскости АВС. Верно ли, что точка Н находится на одинаковом расстоянии от прямых АВ, АС и ВС?

Решение. Пусть N, K и M – точки касания окружности

Решение. Пусть N, K и M – точки касания окружности и сторон АВ, АС и ВС соответственно. Тогда ОN, OK и OM– радиусы, а они должны быть перпендикулярны касательным, то есть

Заметим, что ОN, OK и OM – это также проекции прям

Заметим, что ОN, OK и OM – это также проекции прямых HN, HK и HM соответственно. Раз отрезки АВ, АС и ВС перпендикулярны этим проекциям, то они должны быть перпендикулярны и наклонным:

Это значит, что HN, HK и HM– это расстояния от H д

Это значит, что HN, HK и HM– это расстояния от H до сторон ∆АВС. Осталось показать, что они одинаковы. Это можно сделать с помощью ∆HON, ∆HOK и ∆HOM. Они все прямоугольные, причем катет OH– общий, а катеты ON, OM и OK одинаковы как радиусы одной окружности. Отсюда вытекает вывод, что эти треугольники равны, то есть одинаковы и их гипотенузы HN, HKи HM, ч. т. д.

Теперь снова вернемся к кубу, чтобы на практике научиться определять угол между прямой и плоскостью.

Задание. Найдите угол между ребром куба BD и гранью СDHG:

Решение. ВС – это перпендикуляр к грани СDHG, поэт

Решение. ВС – это перпендикуляр к грани СDHG, поэтому CD– проекция BD на грань СDHG. Тогда нам надо найти ∠BDC. Он составляет 45°, так как это угол между стороной и диагональю квадрата АВСD:

Ответ: 45°.

Ответ: 45°.

Задание. Вычислите угол между ребром CD и плоскостью BDHF:

Решение. Нам надо из С опустить перпендикуляр на B

Решение. Нам надо из С опустить перпендикуляр на BDHF. Несложно догадаться, что для этого надо на грани ABCD опустить перпендикуляр СК на диагональ BD:

Действительно, СK⊥BD. Надо найти ещё одну прямую в

Действительно, СK⊥BD. Надо найти ещё одну прямую в BDHF, перпендикулярную СК. И такой прямой может быть BF. Так как BF перпендикулярна всей грани АВСD, то она обязательно перпендикулярна и СК. Получаем, что СК⊥BF и CK⊥BD, и тогда СK⊥BDHF.

Если СK– перпендикуляр, то KD – это проекция СD. Тогда искомый нами угол – это ∠СDK. Он равен 45°, ведь BD – диагональ квадрата АВСD, а CD – его сторона.

Ответ: 45°

Задание. Чему равен угол между прямой BD и плоскостью ABGH:

Решение. На нижней грани АЕНD опустим на АН перпен

Решение. На нижней грани АЕНD опустим на АН перпендикуляр DK:

Заметим, что ребро АВ перпендикулярно грани АЕНD,

Заметим, что ребро АВ перпендикулярно грани АЕНD, поэтому KD⊥АВ. Но также KD⊥AH (мы специально построили так KD). Тогда можно утверждать, что KD – это перпендикуляр ко всей плоскости АВGH.

В таком случае BK – это проекция BD на AB. Значит, нам необходимо вычислить ∠DBK. Его можно найти из прямоугольного ∆DBK, но сперва надо вычислить длины сторон KD и BD.

ВD найдем из прямоугольного ∆ABD:

Теперь мы можем найти ∠DBK, а точнее его синус, из

Теперь мы можем найти ∠DBK, а точнее его синус, из ∆DBK:

По таблице синусов легко определить, что ∠DBK = 30

По таблице синусов легко определить, что ∠DBK = 30°.

Ответ: 30°.

В ходе сегодняшнего урока мы узнали о перпендикуляре к плоскости. Перпендикуляры используются для определения расстояний в стереометрии, а также угла между прямой и плоскостью.

Теги

между прямыми вмежду прямыми вмежду прямыми вуравнений прямых вмежду прямыми вдекартова прямоугольная системазаданы прямые на прямых векторы прямых Если прямые в Расстояние междунайти расстояние междувычисления расстояния между Расстояние междуто расстояние междувычислении расстояния междуполучим расстояние равнымже расстояние между1. Расстояние междувычисления расстояния междупроводим плоскость пересечения плоскости построим плоскость чтобы плоскость вектор плоскости вектора плоскости и плоскости и плоскости и плоскости параллельные плоскости вид уравнения прямыхкоэффициенты уравнений прямыхТогда уравнение искомойпараметрическое уравнение прямойпараметрическое уравнение прямойтремя уравнениями ив уравнение получим уравнение плоскостинаходим уравнение плоскостиТогда уравнение плоскости

Популярные:

Последние:

Adblock
detector
ang probinsyano april 28 2021 teleseryena.com probinsyano latest episode indian saree nude indianclips4u.com karnataka fucking xnxx assam orgyvideos.info www xxnx indian com blu filam makato.mobi kanada xnxx com force xvideo.com alohaporn.net fmovies .in yagate kimi ni naru hentai hentaimangaz.com energy kyouka!! 2 teachers and students sex videos pornorgy.org shraddha srinath nude رسوم سكس 3gpjizz.info بزاز اختى فلمجنس sexpornosikisx.com سكس طلاب مدارس school girl hardcore hindihdporn.com desi cock sucking sex picture indian pornorado.mobi school life sex stories dvdvilla hollywood pornspider.info self porn 添いカノ~ぎゅっと抱きしめて sakurajav.mobi 長月ラム www.animalsexfun.com porntubemania.net porn telugu sex videos kalighat randi indianpornxvideos.net xxx video india