Содержание материала
Теорема синусов
Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описанной около треугольника, т. е.
Доказательство:
Пусть дан треугольник АВС, ВС = — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.
1) Угол острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором
как вписанный угол, опирающийся на диаметр. Заметим, что
как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим
т. е.
откуда
2) Угол тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника
Из прямоугольного треугольника
как вписанный угол, опирающийся на диаметр)
Поскольку
то
откуда
3) Для справедливость равенства
докажите самостоятельно, В силу доказанного
откуда
Теорема доказана.
Теорема синусов дает возможность решать широкий круг задач. Так, пропорция позволяет решить две следующие задачи:
- зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
- зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.
С помощью формулы можно решить еще три задачи (рис. 153):
- зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
- зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
- зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.
Повторение
Пример:
В остроугольном треугольнике известны стороны и угол
Найти два других угла
округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.
Решение:
По теореме синусов откуда
При помощи калькулятора (таблиц). находим
Тогда
По теореме синусов
откуда
Ответ:
Замечание. Если бы по условию треугольник был тупоугольным с тупым углом то, зная
вначале мы нашли бы острый угол
А затем, используя формулу
получили бы, что
Пример:
Доказать справедливость формулы площади треугольника где
— его стороны, R — радиус описанной окружности.
Доказательство:
Воспользуемся известной формулой площади треугольника: По теореме синусов
откуда
Тогда
Что и требовалось доказать.
Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника
Пример:
Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).
Решение:
Способ 1. Из формулы следует, что
Найдем
. Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда
Из
по теореме Пифагора
откуда
Тогда Способ 2. Используем формулу
из которой
Так как
то
Ответ:
Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу где
— боковая сторона,
— высота, проведенная к основанию
Заменив в формуле
получим
— формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:
Примеры решения задач
Пример
Задание. Основание треугольника равно 10 см, один из углов при основании равен $45^{\circ}$, а противолежащий основанию угол равен $60^{\circ}$. Найдите сторону, противолежащую углу в $45^{\circ}$. Решение. Пусть искомая сторона — $x$ см. Тогда по теореме синусов имеем: $$\frac{10}{\sin 60^{\circ}}=\frac{x}{\sin 45^{\circ}} \Rightarrow x=\frac{10 \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}=\frac{10 \sqrt{2}}{\sqrt{3}}=\frac{10 \sqrt{6}}{3} (\mathrm{см})$$ Ответ.$\frac{10 \sqrt{6}}{3}(\mathrm{см})$

Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут! Узнать стоимость
Пример
Задание. В треугольнике $A B C \quad \angle A=45^{\circ}, \angle C=15^{\circ},$ $B C=4 \sqrt{6}$. Найти $A C$ . Решение. Согласно теореме о сумме углов треугольника $$\angle A+\angle B+\angle C=180^{\circ} \Rightarrow \angle B=180^{\circ}-45^{\circ}-15^{\circ}=$$ Сторону $AC$ найдем по теореме синусов: $$\frac{A C}{\sin \angle B}=\frac{B C}{\sin \angle A} \Rightarrow \frac{A C}{\sin \angle 120^{\circ}}=\frac{4 \sqrt{6}}{\sin \angle 45^{\circ}} \Rightarrow$$ $$\Rightarrow \frac{A C}{\frac{\sqrt{3}}{2}}=\frac{4 \sqrt{6}}{\frac{\sqrt{2}}{2}} \Rightarrow A C=\frac{4 \sqrt{18}}{\sqrt{2}}=4 \cdot \sqrt{9}=12$$ Ответ. $A C=12$
Видео
Доказательство следствия из теоремы синусов
У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.


где R — радиус описанной около треугольника окружности.
Так образовались три формулы радиуса описанной окружности:

Основной смысл следствия из теоремы синусов заключен в этой формуле:

Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.
Для доказательства следствия теоремы синусов рассмотрим три случая.
1. Угол ∠А = α — острый в треугольнике АВС.

Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.
Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.
Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.
BA1 = 2R, где R — радиус окружности
α = 2R sinα
Следовательно: R = α/2 sinα
Для острого треугольника с описанной окружностью теорема доказана.
2. Угол ∠А = α — тупой в треугольнике АВС.
Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.
Следовательно, ∠А1 = 180° — α.

Вспомним свойство вписанного в окружность четырёхугольника:

Также известно, что sin(180° — α) = sinα.
В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:
α = 2R sin (180° — α) = 2R sinα
Следовательно: R = α/2 sinα
Для тупого треугольника с описанной окружностью теорема доказана.
Часто используемые тупые углы:
- sin120° = sin(180° — 60°) = sin60° = 3/√2;
- sin150° = sin(180° — 30°) = sin30° = 1/2;
- sin135° = sin(180° — 45°) = sin45° = 2/√2.
3. Угол ∠А = 90°.

В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.
Следовательно:

Для прямоугольного треугольника с описанной окружностью теорема доказана.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Вычислить, найти сторону треугольника по теореме синусов
Пусть известно: две стороны a, b и угол между ними γ. Нужно найти сторону c и недостающие углы α и β. Используем то, что сумма углов треугольника 180°
\[ β = (180° — (α + γ)) \] \[ \frac{a}{\sin(α)} = \frac{b}{\sin(180° — (α + γ))} \]По формулам приведения
\[ \sin(180° — (α + γ)) = \sin(α + γ) \]Подставим в (4)
\[ \frac{a}{\sin(α)} = \frac{b}{\sin(α + γ)} \]по формуле синуса суммы углов разделим углы
\[ \sin(α + γ) = \sin(α)\cos(γ) + \cos(α)\sin(γ) \]Получим
\[ \frac{b}{a} = \frac{\sin(α)\cos(γ) + \cos(α)\sin(γ)}{\sin(α)} \] \[ \frac{b}{a} = \cos(γ) + \ctg(α)\sin(γ) \]Отсюда найдутся все углы треугольника α и β (см. формула (3)):
\[ \ctg(α) = \frac{\Large\frac{b}{a}\normalsize — \cos(γ)}{\sin(γ)} \]Далее теорема синусов позволит найти оставшуюся сторону c
\[ с = b\frac{\sin(γ)}{\sin(β)} = a\frac{\sin(γ)}{\sin(α)} \]Примеры решения задач
ПРИМЕР 1Задание Одна из сторон треугольника равна 6 см, противолежащий угол равен , а один из прилежащих . Найти длину стороны, лежащей против угла в . Решение Воспользуемся рисунком 1 и введем следующие обозначения. Сторона см, , , – неизвестная сторона. Запишем для этих сторон и углов теорему синусов: Выразим из последнего равенства неизвестную сторону : Подставляя заданные значения сторон и углов, получим: (см) Ответ см
ПРИМЕР 2Задание В треугольнике см. Найти радиус окружности, описанной около треугольника. Решение Из теоремы о сумме углов треугольника, найдем неизвестный угол треугольника: Подставляя значения известных углов, получим: Далее по расширенной теореме синусов Выразим из последнего равенства радиус описанной окружности Подставляя значения стороны и угла, получим (см) Ответ см