Содержание материала
- Похожие файлы
- Видео
- Приведение к одинаковому основанию
- Графический метод решения уравнений
- Производная показательной функции
- Решение показательных уравнений, основанное на вынесении общего множителя за скобки с последующей группировкой слагаемых
- Что такое показательные уравнения
- Решение уравнений методом подбора корня
- Замена переменной
- Пример
- Преобразование показательных уравнений
- Показательная функция
Похожие файлы
Видео
Приведение к одинаковому основанию
Весомую часть уравнений вида ах = b (при а и b 0) можно решить, превратив b в определенную степень числа a. Именно это мы сделали в примере выше, получив одинаковые основания. Главная трудность в том, чтобы найти у этих чисел общий множитель.
Если у нас есть одинаковые основания, но разные показатели степени, то при умножении чисел степени складываются, а при делении — вычитаются. |
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
у(х) = g(x)
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
х3 – х2 – 1 = 0
Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:
х3 – х2 – 1 = 0
х3 = х2 + 1
Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
а)х3 – х – 3 = 0
б) х3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
а) х3 = х + 3
б) х3 = 2х – 0,5
Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Производная показательной функции
Вычислим среднюю скорость роста показательной функции у= на отрезке [х; х+ ∆х]:

Мы видим, что средняя скорость роста показательной функции на отрезке [х; x + ∆х] равна значению этой функции в точке х, умноженному на число. Исследуем, как ведет себя это число при маленьких значениях ∆х. Так как а°=1, то значение
при маленьких значениях ∆х близко к 1. Если на графике функции проведем секущую, проходящую через точки (0; 1) и ( ∆х;
), то ее угловой коэффициент будет равен числу
=tg a (рис. 106).
При секущая будет приближаться к касательной к
графику функции в точке (0; 1). Это означает, что будет
приближаться к произведению на значение производной при х=0. Итак, для нахождения производной функции у=
надо знать только значение этой производной в нуле. Если мы его обозначим через k, то получим формулу

т. е. производная показательной функции пропорциональна самой функции.
Как же найти коэффициент пропорциональности k? Мы знаем, что он равен угловому коэффициенту касательной, проведенной в точке (0; 1). Можно приближенно по графику вычислить этот коэффициент. Так, известно, что для а=10 значение k ≈2,3, поэтому
С помощью знака предела коэффициент k можно записать так:

3. Число е
Посмотрим на графики показательных функций при различных а (рис. 105). Все они проходят через точку М (0; 1). Проведем в этой точке касательные к графикам. Мы видим, что, чем больше основание а, тем «круче» касательная. Так, при а = 2 угловой коэффициент касательной равен 0,693, а при а=10 угловой коэффициент касательной равен 2,303. Ясно, что при непрерывном изменении а от 2 до 10 угловой коэффициент касательной в точке М будет непрерывно меняться и найдется такое значение а, для которого этот коэффициент будет равен единице. Такое основание а обозначается буквой е. Число е иррационально. Его приближенное значение таково: е ≈ 2,718.

Итак, е — это такое число, что угловой коэффициент касательной к графику функции у=в точке х = 0 равен единице, т. е. касательная в этой точке образует с осью абсцисс угол 45° (рис. 107).
Можно сказать иначе. Мы уже знаем, что производная любой показательной функции пропорциональна самой этой функции. Число е — это основание, для которого коэффициент пропорциональности равен единице, т. е. е — это такое число, что производная функции у = равна самой этой функции:

Функцию у = часто обозначают у = ехр х (читается: «Эксп от х») и называют экспонентой. Экспонентами называют и функции более общего вида: у =
. Подумайте, понятен ли вам смысл таких распространенных выражений: «Численность бактерий растет по экспоненте», «Сила тока затухает по экспоненте», «Его успехи растут по экспоненте».
Решение показательных уравнений, основанное на вынесении общего множителя за скобки с последующей группировкой слагаемых
Не пугайся моих слов, ты уже сталкивался с этим методом в 7 классе, когда изучал многочлены. Например, если тебе требовалось разложить на множители выражение:
\( {{a}^{2}}+3a-{{b}^{2}}-3b\)Давай сгруппируем: первое и третье слагаемое, а также второе и четвертое.
Ясно, что первое и третье – это разность квадратов:
\( {{a}^{2}}-{{b}^{2}}=(a-b)(a+b)\),а второе и четвертое имеют общий множитель тройку:
\( 3a-3b=3(a-b),\)Тогда исходное выражение равносильно такому:
\( (a-b)(a+b)+~3(a-b)\),Откуда вынести общий множитель уже не представляет труда:
\( (a-b)(a+b+3)\)Следовательно,
\( {{a}^{2}}+3a-{{b}^{2}}-3b=\left( a-b \right)\left( a+b+3 \right)\)Вот примерно таким образом мы и будем поступать при решении показательных уравнений: искать «общность» среди слагаемых и выносить ее за скобки, ну а потом – будь что будет, я верю, что нам будет везти 🙂
Что такое показательные уравнения
Если ты забыл следующие темы, то для получения наилучшего результата, пожалуйста, повтори:
- Свойства степени и корня
- Решение линейных и квадратных уравнений
- Разложение на множители
Повторил? Замечательно!
Тогда тебе не составит труда заметить, что корнем уравнения \( 3x+5=2{x} -1\) является число \( x=-6\).
Ты точно понял, как я это сделал? Правда? Тогда продолжаем. Теперь ответь мне на вопрос, чему равно \( 5\) в третьей степени? Ты абсолютно прав:
\( {{5}^{3}}=5\cdot 5\cdot 5=125\).
А восьмерка – это какая степень двойки? Правильно – третья! Потому что:
\( 2\cdot 2\cdot 2={{2}^{3}}=8\).
Ну вот, теперь давай попробуем решить следующую задачку: Пусть я \( x\) раз умножаю само на себя число \( 2\) и получаю в результате \( 16\).
Спрашивается, сколько раз я умножил \( 2\) само на себя? Ты, конечно, можешь проверить это непосредственно:
Тогда ты можешь сделать вывод, что \( 2\) само на себя я умножал \( \displaystyle 4\) раза.
Как еще это можно проверить?
А вот как: непосредственно по определению степени: \( \displaystyle {{2}^{4}}=16\).
Но, согласись, если бы я спрашивал, сколько раз два нужно умножить само на себя, чтобы получить, скажем \( \displaystyle 1024\), ты бы сказал мне: я не буду морочить себе голову и умножать \( \displaystyle 2\) само на себя до посинения.
И был бы абсолютно прав. Потому как ты можешь записать все действия кратко (а краткость – сестра таланта)
\( \displaystyle {{2}^{x}}=1024\),
где \( \displaystyle x\) – это и есть те самые «разы», когда ты умножаешь \( \displaystyle 2\) само на себя.
Я думаю, что ты знаешь ( а если не знаешь, срочно, очень срочно повторяй степени!), что \( \displaystyle 1024={{2}^{10}}\), тогда моя задачка запишется в виде:
\( \displaystyle {{2}^{x}}={{2}^{10}}\), откуда ты можешь сделать вполне оправданный вывод, что:
\( x=10\).
Вот так вот незаметно я записал простейшее показательное уравнение:
\( {{2}^{x}}={{2}^{10}}\)И даже нашел его корень \( x=10\). Тебе не кажется, что все совсем тривиально? Вот и я думаю именно так же.
Вот тебе еще один пример:
\( {{1000}^{x}}=100\).
Но что же делать?
Ведь \( 100\) нельзя записать в виде степени (разумной) числа \( 1000\).
Давай не будем отчаиваться и заметим, что оба этих числа прекрасно выражаются через степень одного и того же числа.
Какого?
Верно: \( 100={{10}^{2}},~1000={{10}^{3}}\).
Тогда исходное уравнение преобразуется к виду:
\( {{10}^{3x}}={{10}^{2}}\),откуда, как ты уже понял, \( 3x=2,~x=\frac{2}{3}\).
Давай более не будем тянуть и запишем определение:
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х3 – 2х2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0
–1 – 2 + 1 + 2 = 0
0 = 0
При х = 1 получаем:
13 – 2•12 – 1 + 2 = 0
1 – 2 – 1 + 2 = 0
0 = 0
Наконец, рассмотрим случай, когда х = 2
23 – 2•22 – 2 + 2 = 0
8 – 8 – 2 + 2 = 0
0 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
аxn + a1xn–1 + … + аn–1х + аn = 0
Числа а, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х4 – 7х3 + 9х2 – х + 12 = 0
коэффициенты равны
а = 5
а1 = – 7
а2 = 9
а3 = – 1
а4 = + 12
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
х3 + 2х – 15 = 0
нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи
х3 + 0х2 + 2х – 15 = 0
где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
аxn + a1xn–1 + … + аn–1х + аn = 0
Тогда можно подставить туда число m и получить верное равенство:
аmn + a1mn–1 + … + аn–1m + аn = 0
Поделим обе его части на m и получим
аmn–1 + a1mn–2 + … + аn–1 + аn/m = 0
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа аmn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х4 – х3 – 9х2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Ответ: 1; 2; (– 2).
Пример. Решите ур-ние
0,5х3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х3 + 0,5х + 5 = 0
(0,5х3 + 0,5х + 5)•2 = 0•2
х3 + х + 10 = 0
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ответ: – 2
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
аxn + a1xn–1 + … + аn–1х + аn = 0
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
а1n + a11n–1 + … + аn–11 + аn = 0
а + a1 + … + аn–1 + аn = 0
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Ответ: 1.
Замена переменной
Этот способ решения показательных уравнений понадобится тем, кто не боится по-настоящему трудных задач. Ведь с помощью ввода новой переменной можно упростить даже самое сложное выражение. Его суть проста: мы заменяем «трудную» переменную на более простую и решаем уравнение, а после производим обратную замену. Главное — определить, какую именно переменную стоит заменить.
Пример
4x— 2x+1— 8 = 0
Очевидно, что в этом уравнении показательные функции легко привести к общему основанию: 4х = 22х, а 2х+1 = 2 × 2х.
22х — 2 × 2х — 8 = 0
Что-то напоминает. 🤔 Если бы из этого выражения можно было волшебным образом убрать 2х, получилось бы обычное квадратное уравнение. Поэтому мы обозначим 2х новой переменной — допустим, y.
Если 2х = y, получается: у2— 2у — 8 = 0.
У такого уравнения есть два корня: у1 = 4, у2 = -2.
Проведем обратную замену: 2х = 4, 2х = -2.
Но мы знаем, что показательная функция в любом случае не может быть отрицательным числом, а значит, 2х = -2 корней не имеет. Следовательно, 2х = 4.
х = 2.
Преобразование показательных уравнений
Первое, что нужно запомнить: любое показательное уравнение, каким бы сложным оно ни было, так или иначе должно сводиться к простейшим уравнениям — тем самым, которые мы уже рассмотрели и которые знаем как решать. Другими словами, схема решения любого показательного уравнения выглядит следующим образом:
- Записать исходное уравнение. Например: ${{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11$;
- Сделать какую-то непонятную хрень. Или даже несколько хреней, которые называются «преобразовать уравнение»;
- На выходе получить простейшие выражения вида ${{4}^{x}}=4$ или что-нибудь ещё в таком духе. Причём одно исходное уравнение может давать сразу несколько таких выражений.
С первым пунктом всё понятно — записать уравнение на листик сможет даже мой кот. С третьим пунктом тоже, вроде, более-менее ясно — мы такие уравнения уже целую пачку нарешали выше.
Но как быть со вторым пунктом? Что за преобразования? Что во что преобразовывать? И как?
Что ж, давайте разбираться. Прежде всего, отмечу следующее. Все показательные уравнения делятся на два типа:
- Уравнение составлено из показательных функций с одним и тем же основанием. Пример: ${{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11$;
- В формуле присутствуют показательные функции с разными основаниями. Примеры: ${{7}^{x+6}}\cdot {{3}^{x+6}}={{21}^{3x}}$ и ${{100}^{x-1}}\cdot {{2,7}^{1-x}}=0,09$.
Начнём с уравнений первого типа — они решаются проще всего. И в их решении нам поможет такой приём как выделение устойчивых выражений.
Показательная функция
Определение:
Показательной функцией называется функция вида где основание а—произвольное положительное число, отличное от единицы. От отрицательных значений а отказываются по той причине, что при этом для некоторых значений переменной х значения степени
не существуют. Например, при
и при
значение
не определено. Легко сообразить, что значение
не определено и при
в соответствии с определением степени с рациональным показателем.
В случае значение степени
при любом х равно единице. Случай
не рассматривают потому, что он не интересен.