Окружность. Длина окружности. Касательная, дуга

Длина дуги

      Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Рис.3

Рис.3

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Касательная кокружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей.

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к&nbsp

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки прове

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка п

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Видео

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каж

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr,

где:

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписат

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по фо

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p},

где p = \frac{a + b + c}{2}

Формулы для нахождения длины дуги сектора

Через центральный угол в градусах и радиус

Длина (L) дуги сектора равняется числу π, умноженному на радиус круга (r), умноженному на центральный угол в градусах (α°), деленному на 180°.

Примечание: в расчетах используется число π , приб

Примечание: в расчетах используется число π, приблизительно равное 3,14.

Через угол сектора в радианах и радиус

Длина (L) дуги сектора равна произведению радиуса (r) и центрального угла, выраженного в радианах (aрад).

Вписанный угол вдвое меньше центрального доказательство

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре.

И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (\( \displaystyle AC\)), что и вписанный угол.

Почему же так? Почему вписанный угол вдвое меньше центрального?

Давай разберёмся сначала на простом случае.

Площадь сектора

      Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Рис.4

Рис.4

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Теги

Теги

Популярные:

Последние: