Нормальное, тангенциальное и полное ускорения

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω, то есть скорости изменения угла поворота. 

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆φ к промежутку времени ∆t, за которое оно произошло. ∆t→. ω=∆φ∆t, ∆t→. Единица измерения угловой скорости — радиан в секунду (радс).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

ω=vR

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M. Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O. Тогда положение точки M однозначно определяются ее координатами (x, y, z). Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M
– это вектор , проведенный из начала неподвижной системы координат O в точку M. , где – единичные векторы в направлении осей x, y, z.

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений (1)   можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки
– это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида: , где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Видео

Тангенциальное и нормальное ускорение

Если записать скорость как \( \vec v = v\hat \tau \), где \( \hat \tau \) — орт касательной к траектории движения, то (в двухмерной системе координат):

\( \vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\( = \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \),

где \( \theta \) — угол между вектором скорости и осью абсцисс; \( \hat n \) — орт перпендикуляра к скорости.

Таким образом,

\( \vec a = \vec a_{\tau} + \vec a_n \),

где \( \vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) — тангенциальное ускорение, \( \vec a_n = \dfrac {d\theta} {dt} v \hat n \) — нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \( \hat n \) — это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное — по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \( \omega = \dfrac v r \), где r — радиус кривизны траектории. В таком случае

\( a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Ускорение тангенциальное

Запишем еще раз формулу для этой компоненты полного ускорения:

at¯ = dv/dt*ut¯

Это выражение позволяет описать свойства величины at¯:

  • Она направлена точно так же, как и сама скорость или противоположно ей, то есть по касательной к траектории. Об этом свидетельствует элементарный вектор ut¯.
  • Она характеризует изменение скорости по абсолютной величине, что отражает множитель dv/dt.

Эти свойства позволяют сделать важный вывод: для прямолинейного движения полное и тангенциальное ускорения — это одна и та же величина. В случае криволинейного перемещения полное ускорение всегда больше по модулю, чем тангенциальное. Когда рассматривают физические задачи на прямолинейное равноускоренное движение, то ведут речь именно об этой компоненте ускорения.

Касательное ускорение

Пусть точка M движется по траектории, расположенной в плоскости хОу. Проведем касательную и нормаль к кривой в точке M (рис. 91, б), нанесем на чертеж вектор ускорения точки M и его составляющие и по координатным осям. Чтобы определить касательное ускорение, надо спроецировать на касательную вектор полного ускорения или найти алгебраическую сумму проекций на касательную составляющих и полного ускорения по осям координат. Воспользовавшись вторым из этих способов, спроецируем и на касательную:

Составляющие ускорения  и  направлены по координат

Составляющие ускорения    (62') и    (62') направлены по координатным осям, а направление касательной совпадает с направлением скорости, поэтому косинусы углов а и β равны направляющим косинусам скорости:

   (62'')   (62′)

Подставляя значения направляющих косинусов, получа   (62»)

Подставляя значения направляющих косинусов, получаем

По формуле (68) удобно вычислять касательное ускор

По формуле (68) удобно вычислять касательное ускорение точки, если ее движение задано в координатной форме уравнениями (58′) и (58″).

Можно дать еще другой изящный вывод формулы (68) тангенциального ускорения, для чего спроецировать на касательную вектор полного ускорения, не раскладывая его предварительно по осям декартовых координат. В самом деле, тангенциальное ускорение равно проекции полного ускорения на касательную (рис. 91, а):

ar = a cos δ, но угол δ, как внутренний угол треугольника, равен внешнему αа без другого внутреннего αυ, поэтому:

cos δ = cos (αа—aυ) = cos αа cos aυ + sin αа sin aυ

или, так как αа = 90°- βa и aυ = 90°-βυ

cos δ = cos αа cos aυ + cos βa cos βυ .

Подставляя сюда вместо направляющих косинусов их выражения (67) n (62′), получим

Напомним, что в числителе этой формулы проекции им

Напомним, что в числителе этой формулы проекции имеют свой знак, а знаменатель определяется по (64), т. е. существенно положителен.

Задача №1

Движение точки задано в декартовых координатах уравнениями:

x=21,2 sint,   y=21,2 cost

Определить касательное ускорение точки (см. задачу № 36, стр. 132).

Решение. Дифференцируя уравнения движения, найдем υx = 21,2 sin 2t, υy = -21,2 sin 2t. Определим теперь полную скорость:

Дифференцируя уравнения движения вторично, найдем

Дифференцируя уравнения движения вторично, найдем

αx = 42,2 cos 2t, αy = -42,4 cos 2t.

Касательное ускорение определим по формуле (68):

Ответ. Касательное ускорение равно 60 cos 2t.

Ответ. Касательное ускорение равно 60 cos 2t.

Задача №2

Точка M движется в системе координат хОу согласно уравнениям x=r cos πt, y=r sin πt. Найти касательное ускорение точки М.

Решение. Проекции скорости и ускорения на оси координат, а также и полная скорость точки M были уже нами получены при решении задачи № 44 (см. стр. 142). Для определения касательного ускорения точки M нам остается только подставить эти величины в формулу (68):Ответ. Касательное ускорение равняется нулю.

Ответ. Касательное ускорение равняется нулю.

Для случая задания движения в естественной форме преобразуем формулу (68) следующим образом: и, сокращая на υ, найдем касательное ускорение

и, сокращая на υ, найдем касательное ускорение

    (69)

Принимая во внимание (53), можно придать этой формуле несколько иной вид:

    (69′)

Итак, касательное ускорение—это проекция ускорения точки на касательную к траектории, равная первой производной от величины скорости по времени. Чтобы получить касательное ускорение в векторном выражении, нужно его умножить на единичный вектор касательной:

    (69»)

Как уже было сказано, касательное ускорение не может изменить направления скорости, оно характеризует быстроту изменения величины скорости, т. е. соответствует изменению вектора скорости вдоль его направления.

Если с течением времени величина скорости увеличивается, то касательное ускорение направлено в ту же сторону, что и скорость. Такое движение называют ускоренным.

Если же величина скорости уменьшается, то касательное ускорение направлено в сторону, противоположную скорости. Такое движение называют замедленным.

Каждое из этих движений называют переменным движением.

Если величина скорости точки постоянна, то производная равномерным, а потому равно нулю и касательное ускорение. Движение точки с постоянной по величине скоростью по любой траектории называют равномерным. Следовательно, при равномерном движении точки касательное ускорение равно нулю.

Обратное заключение можно сделать лишь с некоторой оговоркой: если касательное ускорение постоянно равняется нулю, то, следовательно, величина скорости постоянна и движение равномерно; если же касательное ускорение точки равняется нулю не в течение всего рассматриваемого промежутка времени, а только в какое-то мгновение, то движение точки не является равномерным, и равенство При равномерном движении точки по любой траектории означает, что в это мгновение величина скорости достигла экстремального (максимального или минимального) значения.

При равномерном движении точки по любой траектории

    (70)

Формулы (70) справедливы только для равномерного движения точки и неприменимы при других движениях.

Нормальное ускорение

Чтобы получить формулы нормального ускорения, мы опять воспользуемся тем, что проекция вектора на ось равна сумме проекций его составляющих на ту же ось, и определим aN как алгебраическую сумму проекций составляющих ax и ay на нормаль к траектории точки. Выберем за положительное направление нормали то, которое получается от поворота положительного направления касательной на прямой угол против хода часов (см. рис. 91) в сторону вогнутости кривой. Как видно из чертежа (см. рис. 91, б)

aN = ay cos  αυ—ax cos βυ.

Подставляем значения (62) направляющих косинусов:

    (72)

По этой формуле удобно вычислять нормальное ускорение точки, если ее движение задано в координатной форме уравнениями (58′) и (58″).

Эту же формулу (72) можно получить, спроецировав полное ускорение а на нормаль Mn (рис. 91, а):

aN = a sin δ = a sin (αα—αυ)

или

aN=a (sinαα cos αυ -cos αα sin αυ).

Подставляя эти значения и сокращая на а, получим:

Задача №4

Задача №4

Движение точки задано уравнениями X= 21,2 sin2 t, у= 212 cos2 t. Определить нормальное ускорение точки.

Решение. Дифференцируя эти же уравнения движения при решении задачи № 36 (см. стр. 132), мы уже определили нужные нам величины: υx, υy,  υ, ax, ау. Подставляя их в формулу (72), найдем

Ответ. Нормальное ускорение равно нулю.

Ответ. Нормальное ускорение равно нулю.

Задача №5

Точка M движется согласно уравнениям x= r cos πt, y= r sin πt. Найти нормальное ускорение точки М. Решение. Дифференцируя при решении задачи № 44 (см. стр. 142) эти уравнения движения, мы уже нашли проекции скорости и проекции ускорения. Полную скорость определим по ее проекциям согласно (64):

Подставляя все эти величины в формулу (72), найдем

Подставляя все эти величины в формулу (72), найдем

Ответ. Нормальное ускорение равно rπ2.

Ответ. Нормальное ускорение равно 2.

Чтобы преобразовать формулу (72) для случая, когда движение точки задано в естественной форме, припомним из курса высшей математики выражение кривизны плоской кривой, представленной в параметрической форме уравнениями (58′) и (58″),

Если параметр t означает время, то эту геометричес

Если параметр t означает время, то эту геометрическую формулу можно переписать в обозначениях кинематики:     (73)

Сравнивая равенства (72) и (73), находим

    (74)

Мы получили положительное значение проекции, следовательно, нормальное ускорение направлено от точки M в положительном направлении оси Mn (см. рис. 91), т. е. в ту сторону от касательной, по которую лежит траектория точки.

Чтобы получить нормальное ускорение в векторном выражении, надо (74) умножить на единичный вектор       (74/) нормали:

       (74/)

Как уже было сказано, нормальное ускорение не влияет на величину скорости, потому что оно направлено перпендикулярно к скорости. Оно влияет на направление скорости.

Итак, нормальное ускорение—это проекция ускорения точки на нормаль к траектории, направленная в сторону вогнутости, равная квадрату скорости, деленному на радиус кривизны траектории. Если движение точки прямолинейное, то радиус кривизны траектории (прямой линии) равен бесконечности, а нормальное ускорение равно нулю.

Обратное заключение можно сделать лишь с некоторой оговоркой: если в каждое мгновение данного промежутка времени нормальное ускорение движущейся точки равняется нулю, то точка движется по прямой; если же нормальное ускорение точки не постоянно равно нулю, а только в какое-либо мгновение, то движение точки не а потому


является прямолинейным и равенство 
  Рис. 93 означает, что в это мгновение положение точки совпадает с точкой перегиба траектории или же направление скорости меняется на обратное. На чертеже (рис. 93) изображено нормальное ускорение точки в различных местах траектории при равномерном движении.


Рис. 93

Величина ускорения точки равна квадратному корню из суммы квадратов касательного и нормального ускорений: Теги

Теги

Популярные:

Последние:

Adblock
detector