Содержание материала
Модуль с точки зрения геометрии
Забегая вперед, попробуем сразу понять, что же представляет собой модуль на практике — так будет легче уловить его смысл. Нарисуем на листе бумаги прямую координат, возьмем нуль за точку отсчета, а по правую и по левую стороны на одинаковом расстоянии поставим некие две точки — например, 5 и -5.
Модулем будет считаться именно фактическое расстояние до нуля от -5 и от 5. Очевидно, что это расстояние будет совершенно одинаковым. Поэтому в обоих случаях модуль будет равняться числу «5» — и неважно, какой знак стоит перед исходным числом, которое мы рассматриваем.

Видео
Расстояние между точками
Представим числовую ось. Отметим на ней две точки, например 5 и 3. Какое между ними расстояние? Ничего сложного, скажете вы, расстояние равно 5−3=2. И это правильный ответ. Сразу заметим, что 3−5=(−1)(5−3)=−2, то есть при вычитании из меньшей точки большей получаем то же расстояние, но со знаком минус.
Расстояние между точками −2 и −4 равно −2−(−4)=2. И опять, если мы поменяем местами числа в разности, то получим отрицательное расстояние −4−(−2)=(−1)(−2−(−4))=−2
Общий посыл вы уловили. Для нахождения расстояния между двумя точками, надо из большей точки вычесть меньшую. Если сделать наоборот, то получим противоположное, отрицательное расстояние.
Вроде все ясно. Ну и причем здесь модуль? А вот представим, что у вас нет точных значений. Вам просто дали точки a и b, и попросили найти расстояние между ними. Какая-то из двух разностей ниже будет расстоянием:
a−bb−a
Но какая именно? Тут к нам и приходит на помощь модуль. Расстояние между a и b обозначим так:
∣a−b∣
Если a>b, то мы угадали с разностью и получим положительный результат. Взятие модуля никак на него не повлияет. Если a<b, то мы не угадали и получаем отрицательное расстояние. Но, по определению модуля, в результате все-равно получим положительное расстояние.
О
Расстоянием между двумя точками a и b на числовой оси называется модуль их разности: ∣ a − b ∣ .
Наконец, поговорим о модулях одного числа, например ∣5∣ или ∣−2∣. Их можно представить вот так:
∣5∣=∣5−∣∣−2∣=∣−2−∣
В этом смысле модуль одного числа можно понимать как расстояние от до этого числа (до 5 и до −2) на числовой оси.
Решение более сложных примеров
Попробуем упростить выражение \( \left| \sqrt{3}-2 \right|+\left| \sqrt{3}+5 \right|\)
Решение:
Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.
Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).
Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.
\( \displaystyle \sqrt{3} \approx 1,7\). Получается, значение первого выражения под модулем \( \displaystyle \sqrt{3}-2\approx 1,7-2\approx -0,3\text{ }\).
\( -0,3<0\), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:
Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:
Примеры графиков с модулем
Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.
Пример 1.
Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.
Решение:
Объяснение: из рисунка видно, что график симметричен относительно оси Y.
Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.
Решение:
Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).
Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.
Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.
Докажитесвойствомодуля: \( \left
Доказательство:
Предположим, что существуют такие \( x;y\in \mathbb{R}\), что \( \left| x+y \right|>\left| x \right|+\left| y \right|.\) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):
\( \displaystyle \begin{array}{l}\left| x+y \right|>\left| x \right|+\left| y \right|\Leftrightarrow \\{{\left( x+y \right)}^{2}}>{{\left( \left| x \right|+\left| y \right| \right)}^{2}}\Leftrightarrow \\{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2\cdot \left| x \right|\cdot \left| y \right|+{{y}^{2}}\Leftrightarrow \\xy>\left| x \right|\cdot \left| y \right|\Leftrightarrow \\xy>\left| xy \right|,\end{array}\)а это противоречит определению модуля.
Следовательно, таких \( x;y\in \mathbb{R}\) не существует, а значит, при всех \( x,\text{ }y\in \mathbb{R}\) выполняется неравенство \( \left| x+y \right|\le \left| x \right|+\left| y \right|.\)
А теперь самостоятельно…
Уравнения с двумя модулями
До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $\left| f\left( x \right) \right|=g\left( x \right)$ или даже более простому $\left| f\left( x \right) \right|=a$.
Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:
\[\left| f\left( x \right) \right|=\left| g\left( x \right) \right|\]
Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.
Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:
\[\left| f\left( x \right) \right|=\left| g\left( x \right) \right|\Rightarrow f\left( x \right)=\pm g\left( x \right)\]
Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.
Давайте попробуем решать вот такую задачу:
\[\left| 2x+3 \right|=\left| 2x-7 \right|\]
Элементарно, Ватсон! Раскрываем модули:
\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left( 2x-7 \right)\]
Рассмотрим отдельно каждый случай:
\[\begin{align}& 2x+3=2x-7\Rightarrow 3=-7\Rightarrow \emptyset ; \\& 2x+3=-\left( 2x-7 \right)\Rightarrow 2x+3=-2x+7. \\\end{align}\]
В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)
Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:
\[2x+3=-2x+7\Rightarrow 4x=4\Rightarrow x=1\]
Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)
В итоге окончательный ответ: $x=1$.
Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:
\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\]
Опять у нас уравнение вида $\left| f\left( x \right) \right|=\left| g\left( x \right) \right|$. Поэтому сразу переписываем его, раскрывая знак модуля:
\[{{x}^{2}}-3x+2=\pm \left( x-1 \right)\]
Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:
\[x-1=\pm \left( {{x}^{2}}-3x+2 \right)\]
Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.
Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:
\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\Rightarrow \left| {{x}^{2}}-3x+2 \right|=\left| x-1 \right|\]
Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)
В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:
\[\begin{align}& {{x}^{2}}-3x+2=x-1\Rightarrow {{x}^{2}}-4x+3=0; \\& {{x}^{2}}-3x+2=-\left( x-1 \right)\Rightarrow {{x}^{2}}-2x+1=0. \\\end{align}\]
Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:
\[{{x}^{2}}-2x+1={{\left( x-1 \right)}^{2}}\]
Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:
\[{{x}_{1}}=3;\quad {{x}_{2}}=1.\]
Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)
Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:
\[\begin{align}& \left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|; \\& \left| x-1 \right|=\left| \left( x-1 \right)\left( x-2 \right) \right|. \\\end{align}\]
Одно из свойств модуля: $\left| a\cdot b \right|=\left| a \right|\cdot \left| b \right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:
\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]
Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:
\[\begin{align}& \left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|; \\& \left| x-1 \right|-\left| x-1 \right|\cdot \left| x-2 \right|=0; \\& \left| x-1 \right|\cdot \left( 1-\left| x-2 \right| \right)=0. \\\end{align}\]
Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:
\[\left[ \begin{align}& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end{align} \right.\]
Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)
Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)
Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.
Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.
Итак, уравнение:
\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]
Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)
В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:
\[\begin{align}& 5+7=12 \gt 0; \\& 0,004+0,0001=0,0041 \gt 0; \\& 5+0=5 \gt 0. \\\end{align}\]
Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:
\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\Rightarrow \left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0, \\& \left| {{x}^{2}}+x-2 \right|=0. \\\end{align} \right.\]
А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:
\[x-{{x}^{3}}=0\Rightarrow x\left( 1-{{x}^{2}} \right)=0\Rightarrow \left[ \begin{align}& x=0 \\& x=\pm 1 \\\end{align} \right.\]
\[{{x}^{2}}+x-2=0\Rightarrow \left( x+2 \right)\left( x-1 \right)=0\Rightarrow \left[ \begin{align}& x=-2 \\& x=1 \\\end{align} \right.\]
Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.