Содержание материала
- Основное свойство десятичной дроби
- Видео
- Как записать десятичную дробь
- Десятичные дроби подробнее
- Что такое разряды в десятичных дробях
- Как обыкновенную дробь перевести в десятичную?
- Арифметические действия с десятичными дробями
- Сложение и вычитание десятичных дробей
- Умножение десятичных дробей
- Деление десятичных дробей
- Преобразование десятичных дробей
- Как перевести десятичную дробь в проценты
- Преобразование десятичных дробей
- Как перевести десятичную дробь в обыкновенную
- Действия с десятичными дробями
- Как складывать десятичные дроби
Основное свойство десятичной дроби
Свойство
Если к десятичной дроби справа дописать несколько нулей, то величина десятичной дроби не изменится.
Например. $12,034=12,0340=12,03400=12,034000=\ldots$
Замечание
Таким образом, нули в конце десятичной дроби не учитываются, поэтому при выполнении различных действий эти нули можно зачеркнуть/отбросить.
Видео
Как записать десятичную дробь
Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.
Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.
Как решаем:
- Знаменатель равен 10 — это один ноль.
- Отсчитываем справа налево в числителе дробной части один знак и ставим запятую.
- В полученной десятичной дроби цифра 1 — целая часть, цифра 6 — дробная часть.
Ответ: 16/10 = 1,6.
Пример 2. Перевести 37/1000 в десятичную дробь.
Как решаем:
- Знаменатель равен 1000 — это три нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Так как в числителе только две цифры, то на пустующие места пишем нули.
- В полученной десятичной дроби цифра 0 — целая часть, 037 — дробная часть.
Ответ: 37/1000 = 0,037.
Десятичные дроби подробнее
Конечно, ты знаешь, что такое обыкновенная дробь. Например, \( \displaystyle \frac{1}{3},\ \frac{1}{4},\frac{5}{112}\).
Наравне с приведенными выше дробями существуют дроби \( \displaystyle \frac{8}{10},\ \frac{13}{100},\frac{49}{1000}\) и т.д.
Такие дроби можно записать намного удобнее и более кратко, то есть:
\( \displaystyle \frac{8}{10}=0,8\)\( \displaystyle \frac{13}{100}=0,13\)\( \displaystyle \frac{49}{1000}=0,049\)Данного вида дроби называются десятичными. Иными словами:
Десятичной дробью называется обыкновенная дробь, знаменателем которой является \( 10\) в какой-либо степени (первый пример – \( 10\) в первой степени, второй – \( 10\) во второй степени и т.д.).
Ты наверняка знаешь, что каждая цифра после запятой имеет свое название. На всякий случай напомню тебе про них, чтобы в дальнейшем мы говорили на одном языке:

Это огромное число читается по следующему алгоритму:
- Сначала читается число, стоящее до запятой и добавляется слово «целых»: ««\( 46\) целых»;
- Затем читается как обыкновенное число слева после запятой и добавляется слово, обозначающее название самой последней цифры. В нашем случае – «одна тысяча двести тридцать четыре десятитысячные».
А теперь прочитаем все вместе – «\( 46\) целых одна тысяча двести тридцать четыре десятитысячные». Разобрался? Переходим к визуализации полученных знаний!
Итак, небольшая тренировка на понимание, что такое эта десятичная дробь! Нарисуй квадрат \( 10\) на \( 10\) и закрась какую-нибудь его часть равную:
- \( 0,05;\)
- \( 0,4;\)
- \( 0,27;\)
- \( 0,245\)
Справился? Проверяем, что у тебя получилось.
Во-первых, квадрат \( 10\) на \( 10\) состоит из \( 100\) клеточек. Соответственно, \( 0.05\) – \( 5\) клеточек из \( 100\); \( 0,4\) – \( 40\) клеточек из \( 100\) и так далее.
Наверняка, наибольшее затруднение составило последнее число – \( -0,245\). На картинке это необходимо отразить как 24,5 клетки.
В общем, смотри:

С понятиями разобрались, теперь научимся переводить из десятичной дроби в обыкновенную и обратно.
Перевод из десятичной дроби в обыкновенную и обратно
Попробуй перевести:
- \( 0,136\)
- \( 0,2436\)
- \( 0,0456\)
- \( 0,21\)
Сравним ответы:
- \( \displaystyle 0,136=\frac{136}{1000}\)
- \( \displaystyle 0,2436=\frac{2436}{10000}\)
- \( \displaystyle 0,0456=\frac{456}{10000}\)
- \( \displaystyle 0,21=\frac{21}{100}\)
Уверена, что ты с легкостью справился! А как насчет обратного перевода? Из обыкновенных в десятичные?
Попробуй свои силы на вот этих дробях:
- \( \displaystyle \frac{2}{10}\)
- \( \displaystyle \frac{3}{100}\)
- \( \displaystyle \frac{4}{1000}\)
- \( \displaystyle \frac{4562}{100}\)
А вот и ответы:
- \( \displaystyle \frac{2}{10}=0,2\)
- \( \displaystyle \frac{3}{100}=0,03\)
- \( \displaystyle \frac{4}{1000}=0,004\)
- \( \displaystyle \frac{4562}{100}=45\frac{62}{100}=45,62\)
Если ты со всем справился, можешь пропускать следующий абзац, а если где-то допустил ошибку, внимательно прочти о том, как легко и 100% правильно переводить дроби из обыкновенных в десятичные.
- Смотрим на дробь и определяем, есть ли у нее целая часть? Если есть, выделяем целую часть, записываем ее, и ставим запятую.
- После запятой должно быть столько знаков, сколько нулей стоит в знаменателе. Например, дробь \( \displaystyle \frac{4}{1000}\) — \( 3\) нуля в знаменателе, соответственно, мы как бы мысленно выделяем \( 3\) ячейки.
- Затем записываем числитель – \( 4\), но выравниваем его по правому краю, а в пустые ячейки вставляем нули.
Разобрался? Посмотри еще раз эту маленькую «инструкцию»:

Я думаю, ты во всем-всем разобрался! Потренируемся? Попробуй поработать еще с вот этими дробями:
- \( \displaystyle \frac{26}{10}\)
- \( \displaystyle \frac{43}{100}\)
- \( \displaystyle \frac{99}{1000}\)
- \( \displaystyle \frac{3562}{100}\)
А теперь ответы:
- \( \displaystyle \frac{26}{10}=2,6\)
- \( \displaystyle \frac{43}{100}=0,43\)
- \( \displaystyle \frac{99}{1000}=0,099\)
- \( \displaystyle \frac{3562}{100}=35,62\)
Что такое разряды в десятичных дробях
Значение цифры в записи десятичной дроби зависит от того, на каком месте она расположена (так же, как и в случае с натуральными числами). Так, в десятичной дроби семерка – это десятые доли, в – десятитысячные, а в дроби она означает семь десятков тысяч целых единиц. Таким образом, в десятичных дробях тоже существует понятие разряда числа.
Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:
Разберем пример.
У нас есть десятичная дробь 43,098. У нее в разряде десятков находится четверка, в разряде единиц тройка, в разряде десятых – ноль, сотых – 9, тысячных – 8.
Принято различать разряды десятичных дробей по старшинству. Если мы движемся по цифрам слева направо, то мы будем идти от старших разрядов к младшим. Получается, что сотни старше десятков, а миллионные доли младше, чем сотые. Если взять ту конечную десятичную дробь, которую мы приводили в качестве примера выше, то в ней старшим, или высшим будет разряд сотен, а младшим, или низшим – разряд -тысячных.
Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.
Попробуем разложить дробь 56,0455 по разрядам. У нас получится: 56,0455 =50+6+,4+,005+,0005
Если мы вспомним свойства сложения, то сможем представить эту дробь и в других видах, например, как сумму , или и др.
Как обыкновенную дробь перевести в десятичную?
Примеры: \(\frac{3}{5}\)\(=\)\(\frac{3\cdot 2}{5\cdot 2}\)\(=\)\(\frac{6}{10}\)\(=0,6\); \(\frac{63}{25}\)\(=\frac{63 \cdot 4}{25\cdot 4}\)\(=\)\(\frac{252}{100}\)\(=2,52\); \(\frac{7}{200}\)\(=\)\(\frac{7 \cdot 5}{200\cdot 5}\)\(=\)\(\frac{35}{1000}\)\(=0,035\).
Этот способ хорошо работает, когда в знаменателе дроби: \(2\), \(5\), \(20\), \(25\)… и т.д., то есть когда сразу понятно, на что надо домножать. Однако в остальных случаях:
Например, дробь \(\frac{7}{8}\) проще преобразовать делением \(7\) на \(8\), чем догадываться, что \(8\) можно домножить на \(125\) и получить \(1000\).
Далеко не все обыкновенные дроби без проблем превращаются в десятичные. Точнее, превращаются-то все, но вот записать результат такого превращения бывает весьма трудно. Например, дробь \(\frac{9}{17}\) в десятичном виде будет выглядеть как \(0,52941…\) — и так далее, бесконечный ряд неповторяющихся цифр. Такие дроби обычно оставляют в виде обыкновенных.
Однако некоторые дроби, дающие бесконечный ряд цифр в десятичном виде записаны быть могут. Так происходит в случае, если цифры в этом ряду повторяются. Например, дробь \(\frac{2}{3}\) в десятичном виде выглядит так \(0,66666…\) — бесконечный ряд шестерок. Ее записывают вот так: \(0,(6)\). Содержимое скобки – это как раз и есть бесконечно повторяющаяся часть (так называемый период дроби).
Еще примеры: \(\frac{100}{27}\)\(=\)\(3,7037037037…=3,(703)\). \(\frac{579}{110}\)\(=5,2636363636…=5,2(63)\).
Арифметические действия с десятичными дробями
Сложение и вычитание десятичных дробей
Чтобы сложить (вычесть) десятичные дроби, нужно:
- уравнять в этих дробях количество знаков после запятой;
- записать их друг под другом так, чтобы запятая была записана под запятой;
- выполнить сложение (вычитание), не обращая внимания на запятую;
- поставить в ответе запятую под запятой в данных дробях.
Умножение десятичных дробей
При умножении десятичных дробей сначала нужно выполнить умножение, не обращая внимания на запятую, а затем в произведении отделить запятой справа столько знаков, сколько их имеется после запятой в обоих множителях вместе.
Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001, нужно перенести запятую влево на сколько цифр, сколько нулей стоит перед единицей в множителе.
Деление десятичных дробей
Чтобы разделить десятичную дробь на натуральное число, нужно:
- разделить дробь на это число, не обращая внимания на запятую;
- поставить в частном запятую после того, как закончено деление целой части;
- если целая часть меньше делителя, то частное начинается с нуля целых.
Чтобы разделить десятичную дробь на 10, 100, 1000, …, нужно перенести влево запятую в этой дроби на сколько цифр, сколько нулей стоит после единицы в делителе.
Чтобы разделить число на десятичную дробь, нужно:
- в делимом и делителе перенести запятую вправо на сколько цифр, сколько их после запятой в делителе;
- выполнить деление на натуральное число.
Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001, нужно перенести в ней запятую вправо на столько цифр, сколько нулей стоит в делителе перед единицей (т. е. умножить дробь на 10, 100, 1000, …).
Преобразование десятичных дробей
Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!
Как перевести десятичную дробь в проценты
Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.
1% = 1/100 = 0,01
Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.
А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:
0,15 = 0,15 · 100% = 15%.
Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.
2/5 = 0,4 0,4 · 100% = 40%
8/25 = 0,32 0,32 · 100% = 32%
Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:
Преобразование десятичных дробей
Быстрая напоминалка:
Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.
Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).
Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!
Пример 1. Перевести 5,4 в смешанное число.
Как решаем:
- Читаем вслух: пять целых четыре десятых. «Четыре десятых» подсказывают, что в числителе будет 4, а в знаменателе — 10. В смешанном виде эта дробь выглядит так: 5 4/10.
- А теперь сократим числитель и знаменатель на два (потому что можно) и получим: 5 2/5.
Ответ: 5,4 = 5 2/5.
Пример 2. Перевести 4,005 в смешанное число.
Как решаем:
- Читаем вслух: четыре целых пять тысячных. Значит 5 — идет в числитель, а 1000 — в знаменатель. В смешанном виде получается так: 4 5/1000. После сокращения: 4 1/200.
Ответ: 4,005 = 4 1/200.
Пример 3. Перевести 5,60 в смешанное число.
Как решаем:
- Читаем вслух: пять целых шестьдесят сотых. Отправляем 60 в числитель, а 100 — в знаменатель. В смешанном виде дробь такая: 5 60/100.
- Сократим дробную часть на 10 и получим 5 6/10. Или можно вспомнить про свойство десятичной дроби и просто отбросить нули в числителе и знаменателе.
Ответ: 5,60 = 5 6/10.
Как перевести десятичную дробь в обыкновенную
Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:
- Перепишем исходную дробь в новый вид: в числитель поставим исходную десятичную дробь, а в знаменатель — единицу. Например:
- 0,35 = 0,35/1
- 2,34 = 2,34/1
- Умножим числитель и знаменатель на 10 столько раз, чтобы в числителе исчезла запятая. При этом после каждого умножения запятая в числителе сдвигается вправо на один знак, а у знаменателя соответственно добавляются нули. На примере легче:
- 0,35 = 0,35/1 = 3,5/10 = 35/100
- 2,34 = 2,34/1 = 23,4/10 = 234/100
- А теперь сокращаем — то есть делим числитель и знаменатель на кратные им числа:
- 0,35 = 35/100, делим числитель и знаменатель на пять, получаем 6/20, еще раз делим на 2, получаем итоговый ответ 3/10.
- 2,34 = 234/100 = 117/50 = 2 17/50.
Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!
Действия с десятичными дробями
Десятичные дроби – это обычные числа. Мы можем складывать их, вычитать из одной другую, умножать и делить.
Очень важно уметь правильно производить с ними математические действия, так как зачастую именно от арифметических ошибок зависит твоя оценка на экзамене.
Несомненно, ты знаешь, как все это делать, но на всякий случай, дам тебе краткую инструкцию к применению.
Как складывать десятичные дроби
При сложении десятичные дроби записываются «столбиком», так чтобы одноимённые разряды находились друг под другом без смещения. Соответственно, запятые стоят четко друг под другом.
Разберемся на примере:

Сложение происходит, как и сложение натуральных чисел в столбик, при этом запятая в ответе ставится четко на том же месте, как и в складываемых числах.
Если исходные числа имеют разное количество знаков после запятой, то к дроби с меньшим количеством десятичных знаков нужно приписать необходимое число нулей, чтобы уравнять в дробях количество знаков после запятой.
Если при сложении в сумме мы получаем больше \( 10\), то одна единица прибавляется к сумме при сложении цифр следующего разряда.
Решим наш пример, учтя все правила:

Разобрался? Посчитай в столбик самостоятельно:
- \( 0,0125+0,141\)
- \( 2,4225+0,34\)
- \( 122,4355+1,34\)
- \( 2,435+12,3\)
Сравним ответы:
- \( 0,0125+0,141=0,1535\)
- \( 2,4225+0,34=2,7625\)
- \( 122,4355+1,34=123,7755\)
- \( 2,435+12,3=14,735\)