Содержание материала
Равнобедренный треугольник коротко о главном
Определение равнобедренного треугольника
Равнобедренный треугольник – треугольник, у которого есть две равные стороны.
- \( \displaystyle AB=BC\) – боковые стороны
- \( \displaystyle AC\) – основание

Свойства равнобедренного треугольника
Углы при основании равнобедренного треугольника равны: \( \displaystyle \angle A\ =\angle C\);
Высота, проведённая к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой: \( \displaystyle BH\) — высота, медиана и биссектриса.

Признаки равнобедренного треугольника
Если в некотором треугольнике два угла равны, то он – равнобедренный;
Если в некотором треугольнике совпадают высота и биссектриса или высота и медиана или медиана и биссектриса, проведённые к одной стороне, то такой треугольник – равнобедренный.
Видео
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Доказательство теоремы:
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
-
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
-
Значит, во-первых, AH = HC и BH — медиана.
-
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
-
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
-
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
-
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
-
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
-
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
-
Во-вторых, AH = HC и BH — медиана.
Доказательство равенства треугольников
Посмотри внимательно, у нас есть:
- \( \displaystyle \underbrace{AB}_{гипотенуза \ в\ \Delta ABH}=\underbrace{BC}_{гипотенуза\ в\ \Delta СBH}\)
- \( \displaystyle BH\text{ }=\text{ }BH\) (ещё говорят, \( \displaystyle BH\)— общая)

И, значит, \( \displaystyle AH\text{ }=\text{ }CH\)!
Почему?
Да мы просто найдём и \( \displaystyle AH\), и \( \displaystyle CH\) из теоремы Пифагора (помня ещё при этом, что \( \displaystyle AB=BC\))\( \displaystyle AH=\sqrt{A{{B}^{2}}-B{{H}^{2}}}\)\( \displaystyle CH=\sqrt{B{{C}^{2}}-B{{H}^{2}}}\)
Удостоверились? Ну вот, теперь у нас\( \displaystyle \begin{array}{l}AB=BC\\BH=BH\\AH=CH\end{array}\)А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.
Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.
Отметим на картинке все одинаковые элементы (углы и стороны).

Видишь, как интересно? Получилось, что:
- В равнобедренном треугольнике углы при основании равны: \( \displaystyle \angle A=\angle C\);
- Высота, проведенная к основанию \( \displaystyle (ВH)\), совпадает с медианой и биссектрисой
- \( \displaystyle AH=CH\)
- \( \displaystyle \angle 1=\angle 2\).
Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – делит угол.)
Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник.
Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.
И теперь возникает другой вопрос: а как узнать, равнобедренный ли треугольник?
То есть, как говорят математики, каковыпризнаки равнобедренного треугольника?
Свойства равнобедренного треугольника
Свойств равнобедренного треугольника не так много. В решениях школьных задач даже старших классов используется всего 3 свойства:
- Боковые стороны треугольника равны.
- Биссектриса треугольника совпадает с медианой и высотой.
- Углы при основании равнобедренного треугольника равны.
Этих свойств вполне достаточно, чтобы использовать стиль решения неприменимый для любого другого треугольника.
