Как определить площадь сечения цилиндра, конуса, призмы и пирамиды? Формулы

Площадь боковой поверхности цилиндра

Формула площади боковой поверхности цилиндра представляет собой произведение длины основания на его высоту:

А теперь рассмотрим задачу, в которой нам потребуеhА теперь рассмотрим задачу, в которой нам потребуется рассчитать полную площадь цилиндра. В заданной фигуре высота h = 4 см, r = 2 см. Найдем полную площадь цилиндра.Для начала рассчитаем площадь оснований: 
Теперь рассмотрим пример расчета площади боковой поверхности цилиндра. В развернутом виде она представляет прямоугольник. Его площадь рассчитывается по приведенной выше формуле. Подставим в нее все данные: 
Полная площадь круга представляет собой сумму двойной площади основания и боковой: 
Таким образом, используя формулы площади основан


Таким образом, используя формулы площади оснований и боковой поверхности фигуры, мы смогли найти полную площадь поверхности цилиндра.Осевое сечение цилиндра представляет собой прямоугольник, в котором стороны равны высоте и диаметру цилиндра.Формула площади осевого сечения цилиндра выводится из формулы расчета площади прямоугольника:Рассмотрим пример расчета площади осевого сечения

  Рассмотрим пример расчета площади осевого сечения цилиндра. Для этого возьмем условия из задачи, указанной выше. Чтобы найти величину нам потребуется диаметр. Мы знаем, что он равен двойному радиусу: 

Подставим данные:

Видео

Формула площади поверхности цилиндра

Полная площадь поверхности цилиндра является суммой его боковой площади поверхности и площади оснований.

S=Sосн+SбокS=S_{\text{осн}}+S_{\text{бок}}S=Sосн+Sбок

SоснS_{\text{осн}}Sосн — площадь оснований; SбокS_{\text{бок}}Sбок — площадь боковой поверхности.

При вычислении площади поверхности цилиндра важным фактором является вид цилиндра. От него зависит и конкретная формула для площади.

Сечения конуса

Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.

Видов конических сечений существует несколько. Пер

Видов конических сечений существует несколько. Перечислим их:

  • круглое;
  • эллиптическое;
  • параболическое;
  • гиперболическое;
  • треугольное.

Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.

Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:

S1 = pi*r2*z2/h2

Здесь z — это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z < h, то площадь изучаемого сечения будет всегда меньше ее значения для основания.

Треугольное получается, когда плоскость пересекает фигуру по ее оси вращения. Формой получившегося сечения будет равнобедренный треугольник, сторонами которого являются диаметр основания и две образующие конуса. Как находить площадь сечения треугольного? Ответом на этот вопрос будет следующая формула:

S2 = r*h

Это равенство получается, если применить формулу для площади произвольного треугольника через длину его основания и высоту.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Здесь отрезок длиной h является его образующей и в

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Задания для самостоятельной работы

Задача 10

Имеется некий сосуд цилиндрической формы. Емкость заполнили водой объемом 2000см3. После этого вода поднялась до уровня в 12 см. Затем в жидкость опустили предмет, что привело к ее подъему на 9 см. Требуется вычислить объем предмета, погруженного в воду, в см3.

Задача 11

Сосуд цилиндрической формы заполнен водой до уровня в 16 см. Жидкость перелили в другой сосуд аналогичной формы, диаметр которого в два раза больше по сравнению с диаметром первого. Нужно определить, на какой высоте будет находиться уровень воды во втором сосуде.

Задача 12

Имеется два цилиндра. Объем первой фигуры составляет 12м3. Высота второй фигуры в три раза больше по сравнению с первой, а радиус ее основания в два раза меньше, чем у первого цилиндра. Требуется определить, чему равен объем второго цилиндра.

Задача 13

Емкость в форме цилиндра заполнили водой в количестве 6см3. В жидкость опустили какой-то предмет, что привело к подъему уровня воды в 1,5 раза. Необходимо вычислить объем погруженного в жидкость предмета.

Задача 14

При сравнении двух кружек в форме цилиндра выяснили, что первая в два раза выше, чем вторая. Вместе с тем вторая кружка в 1,5 раза шире по сравнению с первой. Требуется найти отношение объема второй кружки к объему первой.

Теги

Популярные:

Последние:

Adblock
detector