Как найти высоту конуса. Теория и формулы

Фундаментальная теория

Перед тем, как найти высоту конуса, необходимо разобраться с теорией.

Конус — фигура, которая плавно сужается от плоского основания (часто, хотя и необязательно, кругового) до точки, называемой вершиной.

Конус формируется набором отрезков, лучей или прямых, соединяющих общую точку с основанием. Последнее может ограничиваться не только окружностью, но и эллипсом, параболой или гиперболой.

Ось - это прямая (если таковая имеется), вокруг ко

Ось — это прямая (если таковая имеется), вокруг которой фигура имеет круговую симметрию. Если угол между осью и основой составляет девяносто градусов, то конус принято называть прямым. Именно такая вариация чаще всего встречается в задачах.

Если в основе лежит многоугольник, то объект является пирамидой.

Отрезок, соединяющий вершину и линию, ограничивающую основание, называют образующей.

Видео

Как найти высоту конуса если известен объем

Прочитав данную статью, вы узнаете, как найти высоту конуса. Приведенный в ней материал поможет глубже разобраться в вопросе, а формулы окажутся весьма полезными в решении задач. В тексте разобраны все необходимые базовые понятия и свойства, которые обязательно пригодятся на практике.

Как найти высоту конуса

Подойдем к вопросу с другой стороны. Для начала используем объем конуса. Чтобы его найти нужно вычислить произведение высоты с третьей частью площади.

Очевидно, что из этого можно получить формулу высоты конуса. Достаточно лишь сделать правильные алгебраические преобразования. Разделим обе части равенства на S и умножим на тройку. Получим:

Теперь вы знаете, как найти высоту конуса. Однако для решения задач вам могут понадобиться и другие знания.

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике Стереометрия

Конусы

      Рассмотрим произвольную плоскость α, точку   S,   не лежащую на плоскости α,   и перпендикуляр   SO,   опущенный из точки   S   на плоскость   α   (точка   O   – основание перпендикуляра). Рассмотрим также произвольный круг с центром в точке   O,   лежащий на плоскости   α.

      Определение 1. Конусом называют фигуру, состоящую из всех отрезков, соединяющих точку   S   с точками указанного круга с центром в точке   O,   лежащего на плоскости   α   (рис. 1).

Рис.1

Рис.1

      Определение 2.

Точку   S   называют вершиной конуса.

Отрезок   SO   называют осью конуса.

Расстояние от точки   S   до плоскостиРасстояние от точки   S   до плоскости   α   (длину отрезка   SO)   называют высотой конуса.

Круг с центром в точке   O,   лежащий на плоскости   α,   называют основанием конуса, радиус этого круга называют радиусом основания конуса, а саму плоскость   α   называют плоскостью основания конуса.

Отрезки, соединяющие точку   S   с точками окружности называют образующими конуса.

Совокупность всех образующих конуса составляет боковую поверхность конуса (коническую поверхность).

Полная поверхность конуса состоит из основания конуса и его боковой поверхности.

      Замечание 1. Отрезок   SO   часто называют высотой конуса.

      Замечание 2. Все образующие конуса имеют одинаковую длину. У конуса с высотой   h   и радиусом основания   r   длина образующих равна

Усеченные конусы

      Рассмотрим конус с вершиной   S,   осью   SO,   радиусом основания   r   и высотой   h.   Плоскость   β,   параллельная параллельная плоскости основания конуса и расположенная на расстоянии   h1   от вершины расстоянии   h1   от вершины   S,   пересекает конус по кругу радиуса   r1   с центром в точке   O1   (рис. 2).

Рис.2

Рис.2

      Из подобия прямоугольных треугольников   SOA   и   SO1A1   можно выразить радиус   r1   через известные величины   r, h   и   h1:

      Таким образом, плоскость   β   делит конус на две части: конус с осью   SO1   и радиусом основания   r1,   а также вторую часть, называемую усеченным конусом (рис. 3).

Рис.3

Рис.3

      Усеченный конус ограничен двумя основаниями: кругом с центром в точке   O   радиуса   r   на плоскости   α   и кругом с центром в точке   O1 радиуса   r1   на плоскости   β,   а также боковой поверхностью усеченного конуса, которая представляет собой часть боковой поверхности исходного конуса, заключенную между плоскостями   α   и   β.   Полная поверхность усеченного конуса состоит из двух оснований усеченного конуса и его боковой поверхности. Часть каждой образующей исходного конуса, которая заключена между плоскостями   α   и   β,   называют образующей усеченного конуса. Например, на рисунке 3 одной из образующих усеченного конуса является отрезок   AA1.

      Высотой усеченного конуса называют расстояние между плоскостями расстояние между плоскостями оснований усеченного конуса. У усеченного конуса, изображенного на рисунке 2, высота равна   h – h1.

Объем, площади боковой и полной поверхностей конуса и усеченного конуса

      Введем следующие обозначения

      Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности конуса, а также формулы для вычисления объема, площади боковой и полной поверхности усеченного конуса.

ФигураРисунокФормулы для объема, площади боковой и полной поверхности
Конус

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

гдеr – радиус основания конуса,l  – длина образующей конуса,h – высота конуса.

Усеченный конус

Sбок= π (r + r1)l ,

гдеh – высота усеченного конуса,r – радиус нижнего основания усеченного конуса,r1 – радиус верхнего основания усеченного конуса,

l – длина образующей усеченного конуса.

Конус
Формулы для объема, площади боковой и полной повер

Формулы для объема, площади боковой и полной поверхности:

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

гдеr – радиус основания конуса,l – длина образующей конуса,h – высота конуса.

Усеченный конус

Формулы для объема, площади боковой и полной поверхности:

,

Sбок= π (r + r1)l ,

гдеh – высота усеченного конуса,r – радиус нижнего основания усеченного конуса,r1 – радиус верхнего основания усеченного конуса,

l – длина образующей усеченного конуса.

      Замечание 3. Формула для вычисления объема конуса

может быть получена из формулы объема правильной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      Замечание 4. Формула для вычисления объема усеченного конуса

может быть получена из формулы объема правильной усеченной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной усеченной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

Основные свойства кругового конуса

1. Все образующие прямого кругового конуса равны между собой. 2. При вращении прямоугольного треугольника вокруг своего катета на 360 ° образуется прямой круговой конус. 3. При вращении равнобедренного треугольника вокруг своей оси на 180 ° образуется прямой круговой конус. 4. В месте пересечения конуса плоскостью, параллельной основанию конуса, образуется круг. (см. Срезанный конус) 5. Если при пересечении плоскость не параллельна основе конуса и не пересекается с основанием, то в месте пересечения образуется эллипс (рис. 3). 6. Если плоскость сечения проходит через основание, то в месте пересечения образуется парабола (рис. 4). 7. Если плоскость сечения проходит через вершину, то в месте пересечения образуется равнобедренный треугольник (см. Осевое сечение).

8. Центр тяжести любого конуса находится на одной четвертой высоты от центра основы.

Теги

Популярные:

Последние:

Adblock
detector