Содержание материала
- Какое бывает ускорение
- Видео
- Формула ускорения в разных системах координат
- Среднее ускорение
- Тангенциальное ускорение
- Другие формы
- Перемещение и путь
- Как рассчитать ускорение: формулы
- Для прямолинейного движения
- Для равноускоренного движения
- Для равнозамедленного движения
- Нахождение ускорения через массу и силу
- Путь, скорость и ускорение
Какое бывает ускорение
Ускорение бывает равномерное, положительное и отрицательное.
- Если скорость изменяется (возрастает или убывает) равномерно, то ускорение называется равномерным;
- Если скорость возрастает, то ускорение положительно;
- Если скорость убывает, то ускорение отрицательно.
Формула для нахождения ускорения: a=v/t
Видео
Формула ускорения в разных системах координат
В декартовых координатах проекции ускорения (ax,ay,az) на оси (X,Y,Z)можно представить как:
Соответственно, имеем:
где $\bar{i}, \bar{j}, \bar{k}$ – единичные орты по осям X,Y.Z. При этом модуль ускорения равен:
В цилиндрической системе координат имеем:
В сферической системе координат модуль ускорения можно найти как:
Среднее ускорение
Среднее ускорение — это отношение изменения скорости к промежутку времени, за который это изменение произошло.
\(\overrightarrow{a_{ср}}=\frac{\triangle\overrightarrow V}{\triangle t}\), где \(\overrightarrow{a_{ср}}\) — среднее ускорение, \(\triangle\overrightarrow V\) — изменение скорости, \( \triangle t\) — изменение времени.
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Другие формы
Можно взять материальный предмет, например, спутник, который вращается вокруг Земли. Он двигается по окружности и ускоряется, причина этого — изменение направления траектории движения. При этом его скоростной режим может не изменяться. В этом случае речь идёт о центростремительном (направленном к центру) ᾱ.
Ускорение тела относительно состояния свободного падения (ᾱ правильное) измеряется акселерометром. В механике для предмета с постоянной массой (m) ᾱ центра m тела пропорционально действующему на него вектору силы (суммы всех сил). Здесь действует второй закон Ньютона: F = m * ᾱ → ᾱ = F / m.
Скорость частицы, которая движется по криволинейной траектории, можно записать как функцию времени v(t) = v(t) * v(t) / v(t) = v(t) * ut(t), где единичный вектор касательной (ut) к траектории равен v(t) / v(t) и указывает направление движения в конкретный момент времени. Это и есть формула центростремительного ускорения, которое создаётся при круговом движении. Можно использовать цепное правило дифференцирования, чтобы записать формулу для произведения двух функций, если принять во внимание, что ᾱ частицы происходит по некой кривой проекции. Последовательность действий уравнения следующая:
- ᾱ = dv / dt;
- = dv / dt + v(t) * dut / dt;
- = dv / dt * ut + v² / r * un.
В уравнении un — единичный вектор нормали, r — мгновенный радиус кривизны, который основывается на колеблющемся круге в момент времени t. Все эти компоненты являются тангенциальным, радиальным или нормальным ускорением, формула которого может быть представлена в виде функции.
Перемещение и путь
Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

В системе СИ перемещение и длина пути измеряются в метрах.
Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.
Как рассчитать ускорение: формулы
Для прямолинейного движения
Прямолинейное движение — механическое движение, при котором траектория тела — прямая линия.
В этом случае ускорение находится по следующим формулам:
\(a\;=\;\frac{\mathrm V}t\)
\(a\;=\;\frac{2S}{t^2}\)
\(a\;=\;\frac{V^2}{2S}\)
Где \(a\) — достигнутое ускорение тела, \(S\) — пройденный путь (расстояние), \(t\) — затраченное время.
Время отсчитывается от начала движения тела.
При прямолинейном равномерном движении ускорение по модулю равняется нулю.
Для равноускоренного движения
Равноускоренное движение — прямолинейное движение с постоянным положительным ускорением (разгон).
При таком виде движения ускорение определяется по формуле: \(a\;=\;\frac{V-V_0}t\), где \(V_0\) и \(V\) начальная и конечная скорости соответственно, \(a\) — достигнутое ускорение тела, \(t\) — затраченное время.
Для равнозамедленного движения
Равнозамедленное движение — прямолинейное движение с постоянным отрицательным ускорением (замедление).
При таком виде движения ускорение находим по формуле: \(a\;=-\;\frac{V-V_0}t\), где V и V начальная и конечная скорости соответственно, a — достигнутое ускорение тела, t — затраченное время.
Нахождение ускорения через массу и силу
Принцип инерции Галилея:
Если не действовать на тело, то его скорость не будет меняться.
Система отсчета (СО) — система координат, точка отсчета и указание начала отсчета времени.
Инерциальная система отсчета (ИСО) — это СО, в которой наблюдается движение по инерции (соблюдается принцип инерции).
II закон Ньютона:
В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
или
\(\overrightarrow a=\frac{\overrightarrow F}m\)
Путь, скорость и ускорение
Формула v=at дает соотношение между скоростью, ускорением и временем, а формула S = at2/2 дает соотношение между путем, ускорением и временем. До сих пор, однако, мы не имели соотношения между путем S, скоростью и и ускорением а. Один из способов вывести это соотношение заключается в подстановке t2, выраженного через v и а, в формулу S = at2/2. Решая относительно t формулу v=at, мы получим t=v/a. Возведя обе части в квадрат: t2=v2/a2, подставляя v2/a2 вместо t2, имеем
v2 = 2aS
Задача:
Скорость автомобиля 90 см/сек. Через 3 сек его скорость равна нулю. Найдите его отрицательное ускорение (темп равномерного уменьшения скорости).
Решение:
a=-v/t
Подстановка значений:
a=-90/3=-30 см/сек. за 1 сек.
Ответ можно записать и так: 30 см/сек2, это будет означать, что автомобиль уменьшает свою скорость на 30 см/сек за каждую секунду.