Содержание материала
Основные свойства трапеции
1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:AB + CD = BC + AD
2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:AK = KB, AM = MC, BN = ND, CL = LD
3. Средняя линия трапеции параллельна основаниям и равна их полусумме:m = | a + b |
2 |
BC : AD = OC : AO = OB : DO
7. Диагонали трапеции d 1 и d 2 связаны со сторонами соотношением: d 12 + d 22 = 2a b + c 2 + d 2
Видео
Средняя линия трапеции
Для начала – что же такое средняя линия трапеции?
Средняя линия трапеции –это отрезок, который соединяет середины боковых сторон трапеции.

Оказывается, длину этой средней линии можно выразить через длины оснований трапеции. А именно, имеет место такая формула:
\( \displaystyle m=\frac{a+b}{2}\), то есть:
Длина средней линии трапеции равна полусумме (то есть половине суммы) длин оснований.

А еще…
Средняя линия трапеции параллельна ее основаниям.
Свойства трапеции, описанной около окружности
Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.
- Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2.
- У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ.
- Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
- Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab.
- И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные. Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.
Доказательства некоторых свойств трапеции
Равенство углов при основании равнобедренной трапеции:
- Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).
Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.
АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.
Откуда АКМ = 180- МЕТ = 180- КАЕ = КМЕ.
Что и требовалось доказать.
Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной:
- Для начала проведем прямую МХ – МХ || КЕ. Получим параллелограмм КМХЕ (основание – МХ || КЕ и КМ || ЕХ).
∆АМХ – равнобедренный, поскольку АМ = КЕ = МХ, а МАХ = МЕА.
МХ || КЕ, КЕА = МХЕ, поэтому МАЕ = МХЕ.
У нас получилось, что треугольники АКЕ и ЕМА равны между собой, т.к АМ = КЕ и АЕ – общая сторона двух треугольников. А также МАЕ = МХЕ. Можем сделать вывод, что АК = МЕ, а отсюда следует и что трапеция АКМЕ – равнобедренная.
Высота трапеции
Формулы определения длины высоты трапеции:
1. Формула высоты через сторону и прилегающий угол при основании:h = c·sin α = d·sin β
2. Формула высоты через диагонали и углы между ними:h = | sin γ · | d1 d2 | = | sin δ · | d1 d2 |
a + b | a + b |
h = | sin γ · | d1 d2 | = | sin δ · | d1 d2 |
2m | 2m |
h = | 2S |
a + b |
5. Формула высоты трапеции через площадь и длину средней линии: h = Sm
Виды трапеций
Если боковые стороны трапеции равны, то трапеция называется равнобокой или равнобедренной (Рис.5).
Трапеция называется прямоугольной, если одна из боковых сторон перпендикуляна основаниям трапеции (Рис.6).
![]() ![]() |
Трапеция называется разносторонней, если длина всех сторон разные (т.е. если трапеция не прямоульная и не равнобедренная)(Рис.7).
![]() |
Что такое трапеция?
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.
Вот, смотри:

Оказывается, трапеция (как и треугольник) бывает равнобедренная.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?
А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)
Свойства трапеции
- Средняя линия трапеции параллельна основаниям и равна их полусумме
- Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии. Его длина
- Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
- Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
- Треугольники, лежащие на основаниях трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
- Треугольники, лежащие на боковых сторонах трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
- В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
- Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)
Углы трапеции
бывают острые, прямые и тупыеУ прямоугольной трапеции два угла прямыеТупые углы трапеции принадлежат меньшемуострые – большемуЛюбую трапецию можно рассматривать как усеченный треугольник, у которого линия сечения параллельна основанию треугольника. Важно. Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.
Примеры решения задач
ПРИМЕР 1Задание В равнобедренной трапеции угол в два раза больше угла . Найти все углы трапеции. Решение Сумма углов трапеции, прилежащих к боковой стороне, равна . Пусть , тогда , тогда и . Так как трапеция – равнобедренная, то , а Ответ
ПРИМЕР 2Задание В трапеции высота равна 9 см, а углы при основании и . Найдите боковые стороны трапеции. Решение В трапеции проведём высоты и . Рассмотрим прямоугольный и найдем Далее рассмотрим прямоугольного : Ответ см, см