Содержание материала
Тригонометрический круг
Углы в радианах
Для математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2πr. Следовательно 360° в радианах равно 2π, а 180° равно π радиан.
Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π.
Например, для угла 90° будет 90°180°· π = 12π
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Нахождение тангенса и котангенса через синус и косинус
\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]
Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \( \dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \), а отношение \( \dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) — будет являться котангенсом.
Добавим, что только для таких углов \( \alpha \), при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества \( tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \), \( ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \).
Например: \( tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \( \alpha \), которые отличны от \( \dfrac{\pi}{2}+\pi z \), а \( ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) — для угла \( \alpha \), отличного от \( \pi z \), \( z \) — является целым числом.
Видео
Связь между тангенсом и котангенсом
Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.
- Тождество записывается в следующем виде: tg α * ctg α = 1.
Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.
Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.
tg α * ctg α = 1.
- По определению: tg α = y/x ctg α = x/y
- Отсюда следует, что tg α * ctg α = y/x * x/y = 1
- Преобразовываем выражение, подставляем
и
, получаем:
Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.
Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.
Взаимно обратные числа — это два числа, произведение которых равно 1.
Тангенс и косинус, котангенс и синус
Преобразовав основные тождества, приходим к выводу, что тангенс связан через косинус, а котангенс через синус. Это видно по формулам .
Определение звучит так: сумма квадрата тангенса угла и приравнивается к дроби , где в числителе имеем , а в знаменателе квадрат косинуса данного угла, а сумма квадрата котангенса угла наоборот. Благодаря тригонометрическому тождеству , можно разделить соответствующие стороны на и получить , где значение не должно равняться нулю. При делении на получим тождество , где значение не должно равняться нулю.
Из приведенных выражений получили, что тождество верно при всех значениях угла , не принадлежащих , а при значениях , не принадлежащих промежутку .
Всё ещё сложно? Наши эксперты помогут разобраться Все услуги