Содержание материала
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта. 2. Раздавайте видеоуроки в личные кабинеты ученикам. 3. Смотрите статистику просмотра видеоуроков учениками.
Нет, спасибоПолучить доступ
Видео
В чём здесь фокус?
Среднее гармоническое действительно не самая очевидная вещь. Дело в том, что если бы у вас было две разных установки, одна из которых работает со скоростью 10 деталей/час, а другая — 20 деталей/час, конечно, их средняя производительность составляла бы 15 деталей/час. В этом случае вы имеете полное право просто сложить их производительность и вычислить среднее арифметическое, ведь установки работают независимо друг от друга.
Если не верите в среднее гармоническое, можно устроить себе обратную проверку. Мы утверждаем, что наша универсальная установка по заготовке и полировке деталей справляется с 7,14 деталями в час. Проверим: мы знаем, что за час машина либо обрабатывает 25 деталей, либо полирует 10. Получаем:
Подготовка: 7,14/25 = 0,29 часов Полировка: 7,14/10 = 0,71 часов
Да-да, 0,29 + 0,71 = 1, цифры работают: для полного цикла изготовления 7,14 деталей действительно требуется один час.
Как рассчитать годовую амплитуду температуры воздуха?
Годовая амплитуда температур – это разница между самым теплым (обычно это июль) и самым холодным (январь) месяцем года. Например, средняя температура июля равна +18°C., а средняя температура января – -5°C. Амплитуда (А), будет равна 18 -(-5). А=23.
Среднее геометрическое
Наш «усреднённый элемент» зависит от того, что мы делаем с уже существующими элементами группы данных. В большинстве случаев элементы просто складываются, и среднее арифметическое прекрасно работает. Но иногда нам нужно что-то большее. Например, когда мы работаем с инвестициями, площадью и объёмом. В таких случаях данные взаимодействуют между собой именно путём умножения (ожидаемая доходность, объём или площадь фигуры вычисляются с помощью умножения), и это меняет наш подход к выявлению средних значений.
Вот пример. Какой инвестиционный портфель вы предпочтёте? Иными словами, какой из них принесёт большую прибыль в течение типичного года?
- Портфель А: +10%, -10%, +10%, -10%
- Портфель Б: +30%, -30%, +30%, -30%
Выглядят они похоже. Наша повседневная логика, построенная на привычке к среднему арифметическому, говорит нам, что оба портфеля достаточно рискованны, и оба в среднем приведут к убыткам или нулевой прибыли. Поэтому, наверное, мы выберем портфель Б, поскольку в успешный год он принесёт больше прибыли.
И это неверно! На фондовом рынке с таким подходом мы с вами точно бы прогорели. Проценты с инвестиций умножаются, а не складываются. Мы не можем просто взять и использовать среднее арифметическое, нам нужно найти действительный коэффициент окупаемости. Коэффициент окупаемости считается достаточно просто: берём условные 100% нашего текущего капитала в качестве единицы. Далее представляем колебания доходности-убытка, представленные в описании портфелей, добавляя к нашей единице или вычитая из неё процентные показатели. Затем перемножаем полученные колебания и получаем коэффициент. Для расчёта среднегодового значения коэффициента окупаемости делим полученный коэффициент на 4 (поскольку элементов в нашем числовом ряду четыре).
- Портфель А:
Коэффициент окупаемости: 1,1 * 0,9 * 1,1 * 0,9 = 0,98 (2% убытка)
Среднегодовое значение: (0,98)^(1/4) = 0,5% годового убытка
- Портфель Б:
Коэффициент окупаемости: 1,3 * 0,7 * 1,3 * 0,7 = 0,83 (17% убытка)
Среднегодовое значение: (0,83)^(1/4) = 4,6% годового убытка
Выбор между 2% или 17%? Огромная разница! Конечно, разумный человек отказался бы от обоих портфелей, но из двух зол лучше выбрать Портфель А. И именно здесь среднее арифметическое не работает.
Несколько примеров, где работает среднее геометрическое:
- Темпы инфляции: У вас есть показатели в 1%, 2% и 10%. Каков средний показатель инфляции за конкретный период времени? (1,01 * 1,02 * 1,10)^(1/3) = 4,3%.
- Скидки: У вас есть три скидочных купона на 50%, 25% и 35%. Какова средняя скидка? (0,5 * 0,75 * 0,65)^(1/3) = 37.5%.
- Площадь: У вас есть участок земли 40х60 м. Вам нужно вычислить «усреднённую сторону» — иными словами, сторону квадрата примерно той же площади. (40 * 60)^(0.5) = 49 м.
- Объём: У вас есть коробка 12х24х48 см. Вам снова нужна усреднённая сторона, то есть сторона куба примерно того же объёма. (12 * 24 * 48)^(1/3) = 24 см.
Среднее геометрическое помогает найти «типичный элемент» среди группы элементов, взаимодействующих друг с другом путём умножения. И, как видим, у него множество практических применений.
Как вычислить среднесуточную температуру воздуха
Я думаю, что температуру окружающего воздуха измерял каждый человек. В бытовых условиях измерения проводятся раз-два в сутки. На метеорологических станциях это делается каждые 3 часа. Таким образом, ученые получают 8 показателей и рассчитывают их среднее арифметическое, то есть суммируют все значения и делят полученную сумму на количество показателей.
Как можно определить амплитуду?
Амплитуда температур – это разница между наибольшей и наименьшей температурой в течении определенного периода времени. Соответственно, чтобы вычислить амплитуду надо из наибольшего показателя вычесть наименьший (в соответствии с математическими правилами).