Содержание материала
Средняя линия треугольника + Задачи по теме
Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.
Свойства средней линии треугольника: 1. Средняя линия параллельна третьей стороне и равна ее половине. 2. Средняя линия трeугольника отсекает от него треугольник, подобный данному (с коэффициентом подобия 1/2 ). 3. Три средние линии треугольника делят его на 4 равных треугольника, подобных данному, с коэффициентом подобия 1/2.
Свойство средней линии треугольника является следствием теоремы Фалеса.
ПРИМЕРЫ РЕШЕНИЯ КЛЮЧЕВЫХ ЗАДАЧ
Задача № 1. Дано: ΔABC; AB = 8 см; BC = 10 см; AC = 12 см; M — середина AB; N — середина BC; L — середина AC. Найти: MN, NL, ML.
Задача № 3. ΔABC; K — середина AB; O — середина BC; P — середина AC; PABC = 52 см. Найти: PКOР
Это конспект по теме «Средняя линия треугольника + Задачи по теме». Выберите дальнейшие действия:
- Перейти к следующему конспекту:
- Вернуться к Списку конспектов по геометрии
Видео
Понятие средней линии прямоугольного треугольника
Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.
В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.
Средняя линия прямоугольного треугольника делит его на четыре прямоугольных треугольника.
Средняя линия
Чтобы понять, как найти середину треугольника, можно воспользоваться обычной линейкой. Для этого необходимо выбрать произвольные две стороны фигуры. Затем отметить на каждой из них точки, отстоящие на одинаковом расстоянии от соответствующих вершин, которые ограничивают данную сторону. Полученные две точки следует соединить, чтобы начертить средний отрезок. Его название является интуитивно понятным каждому, поскольку он соединяет середины двух сторон.
Важные свойства
Существует три основных свойства, которыми обладает рассматриваемый отрезок. Пусть имеется треугольник произвольного типа ABC, в котором точки P и Q лежат на серединах сторон AB и AC соответственно. При таком обозначении отрезок PQ будет средней линией треугольника ABC. Справедливы следующие геометрические свойства:
- Полученный треугольник APQ является подобным исходной фигуре ABC. Доказать это утверждение несложно, если обратить внимание на два факта: во-первых, угол A у обеих фигур является общим, во-вторых, отношение AB/AP равно величине AC/AQ и составляет 2 согласно выполненным геометрическим построениям. Таким образом, выполняется один из признаков подобия.
- Длина средней линии PQ оказывается в два раза меньше, чем сторона BC. Кроме того, оба отрезка параллельны друг другу. Утверждение о равенстве PQ = ½*BC следует из факта подобия треугольников APQ и ABC, коэффициент которых составляет 2. Это равенство также можно доказать, если воспользоваться координатным методом.
- Треугольник APQ имеет в 4 раза меньшую площадь, чем исходная фигура ABC.
Утверждение № 3 из списка справедливо для произвольного треугольника. Для его доказательства следует воспользоваться формулой Герона. Согласно ей, площадь рассматриваемой фигуры может быть вычислена следующим образом:
S = (p*(p-a)*(p-b)*(p-c))^0,5.
Здесь p = (a+b+c)/2 — полупериметр фигуры. Буквами a, b и c обозначены длины ее сторон. Пусть таким же образом обозначаются стороны для треугольника ABC. Тогда для фигуры APQ они будут иметь длины a/2, b/2 и c/2. Полупериметр для APQ составит величину p1 = (a+b+c)/4 = ½*p. Теперь необходимо подставить все известные величины в формулу Герона, получается площадь S1:
S1 = (p1*(p1-a/2)*(p1-b/2)*(p1-c/2))^0,5 = (½*p*(½*p-a/2)*(½*p-b/2)*(½*p-c/2))^0,5 = ¼*S.
Иными словами, площадь треугольника APQ составляет четвертую часть от этой величины для ABC.
Решение задачи
В треугольнике ABC проведен средний отрезок PQ, граничные точки которой P и Q находятся на сторонах AB и AC соответственно. Необходимо с использованием метода координат доказать, что эта линия имеет в два раза меньшую длину, чем сторона BC.
Прежде чем находить решение этой задачи, следует обозначить координаты вершин исходной фигуры. Они будут следующие:
- A (x1, y1);
- B (x2, y2);
- C (x3, y3).
Поскольку точка P делит ровно пополам сторону AB, то для нахождения ее координат необходимо провести следующие вычисления:
P = ((x1+x2)/2, (y1+y2)/2).
Аналогичным образом рассчитываются координаты точки Q:
Q = ((x1+x3)/2, (y1+y3)/2).
Вспоминая формулу для длины вектора, координаты конца и начала которого известны, для средней линии PQ можно произвести следующие вычисления:
PQ = (((x1+x3)/2 — (x1+x2)/2)^2 + ((y1+y3)/2 — (y1+y2)/2)^2)^0,5 = ½*((x3-x2)^2 + (y3-y2)^2)^0,5.
В свою очередь, длина стороны BC равна:
BC = ((x3-x2)^2 + (y3-y2)^2)^0,5.
Из сопоставления этих двух равенств следует искомая формула, которую требовалось доказать:
PQ = ½*BC.
Поскольку в процессе доказательства были использованы произвольные координаты для вершин треугольника, полученный вывод является общим и универсальным для любого типа рассматриваемых фигур.
Формула для расчета
Теорема
Средняя линия треугольника параллельна основанию и равна её половине.
\(A_1C_1=\frac12AC\)
Доказательство
Дано:
\(\triangle ABC\)
\(A_1C_1\)— средняя линия
Доказать:
\(A_1C_1\parallel AC\)
\(A_1C_1=\frac12AC\)
Рассмотрим \(\triangle BA_1C_1\) и \(\triangle BAC\):
\(\left\{\begin{array}{l}\angle B\;-\;общий\\\frac{BA_1}{BA}=\frac{BC_1}{BC}=\frac12\end{array}\right.\)
Из этого следует, что треугольники подобны по двум пропорциональным сторонам и углу между ними.
Следовательно, \(\angle BA_1C_1=\angle BAC\) , как соответственные элементы подобных треугольников. Следовательно \(A_1C_1\parallel AC\) по признаку параллельности.
Кроме того, из подобия следует, что \(\frac{A_1C_1}{AC}=\frac12\)
Следовательно, \(A_1C_1=\frac12AC\)
Утверждение доказано.
Примечание
Данная формула одинаково работает для любого треугольника: равнобедренного, равностороннего (правильного).
Примеры решения задач
ПРИМЕР 1Задание В треугольнике провели среднюю линию , параллельную. Найти площадь треугольника , если известно, что см, а высота , опущенная на сторону , равна 5 см. Решение В треугольнике (см. рис. 1) средняя линия равна половине стороны , поэтому Найдем площадь треугольника : Так как средняя линия отсекает треугольник , площадь которого равна одной четвёртой площади исходного треугольника , то площадь треугольника равна: Ответ см.
ПРИМЕР 2Задание В треугольнике провели средние линии см, см и см. Найти периметр треугольника . Решение Так как средняя линия равна половине стороны, которой она параллельна, то можем найти длины всех сторон треугольника : см см см Теперь можно найти периметр треугольника как сумму длин всех его сторон: см Ответ см.