Содержание материала
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта. 2. Раздавайте видеоуроки в личные кабинеты ученикам. 3. Смотрите статистику просмотра видеоуроков учениками.
Нет, спасибоПолучить доступ
Видео
Конус []
Конусом (прямым круговым конусом
) называется тело, состоящее из круга (основания конуса
), точки, не лежащей в плоскости этого круга (вершины конуса
), и всех отрезков, соединяющих вершину конуса с точками основания.
Конус является телом вращения.
Конус
Рис.1
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.
Конус — тело, которое ограничено конической поверхностью и плоскостью, на которой лежат концы образующих конической поверхности.
Коническая поверхность — поверхность, которая образуется движением отрезка, один из концов которого неподвижен, а другой перемещается на плоскости вдоль некоторой кривой. Отрезки называют образующими конической поверхности, а кривую – направляющей. Неподвижная точка – вершина конической поверхности.
Боковая поверхность конуса — часть конической поверхности, ограниченная плоскостью.
Основание конуса — часть плоскости, отсекаемая боковой поверхностью конуса.
Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания (См.Рис.1). В противном случае, конус называется наклонным. В школьном курсе изучается прямой круговой конус.
Круговой конус
— конус, у которого в основании круг.
Прямой круговой конус (просто конус
) — круговой конус, у которого прямая, соединяющая вершину конуса с центром круга, лежащего в основании, перпендикулярна плоскости основания.
Ось конуса — прямая, проходящая через вершину конуса и центр основания конуса.
Высота конуса — отрезок оси конуса, соединяющий вершину конуса с центром основания.
Конус можно рассматривать как тело, полученное вращением прямоугольного треугольника вокруг прямой, содержащей его катет.
Образующие конуса совпадают с образующими конической поверхности.
Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением. Плоскость, проходящая через образующую конуса и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью конуса. См.Рис.2 .
Рис.2
Развёртка боковой поверхности конуса — круговой сектор, радиус которого равен образующей конуса, а длина дуги сектора равна длине окружности основания конуса.
Площадь боковой поверхности (круглого
) конуса равна произведению половины длины окружности основания (C) на образующую (l): $$S_{бок}=\frac{1}{2}\cdot Cl=\pi\cdot rl$$ , где r – радиус основания, l – длина образующей.
Площадь полной поверхности конуса — сумма площадей основания конуса и его боковой поверхности, которая записывается формулой: $$S_{полн}=\pi\cdot r(l+r)$$ , где r — радиус основания, l — длина образующей.
Объем всякого
конуса равен трети произведения площади основания (S) на высоту (
Усеченный конус – это часть конуса, ограниченная его основанием и сечением, параллельным плоскости основания. См.Рис.3.
Усечённый конус
Рис.3
Формулы для усечённого конуса (См.Рис.4): $$ S_{бок}=\pi\cdot l\cdot (R+r) \\ S_{полн}=S_{бок}+\pi(R^2+r^2) \\ V=\frac{1}{3}\pi\cdot h(R^2+R\cdot r+r^2) $$
Усечённый конус
Рис.4
Пример 1. Высота конуса равна 4 , а длина образующей — 5. Найдите диаметр основания конуса.
Видео-решение.
www.wiki.eduvdom.com
Как найти образующую конуса
Задание.Как найти образующую конуса, если диаметр его основания равен 12 см, а высота равна 8 см.
Решение.Изобразим схематически конус, на котором обозначим его высоту, радиус основания и образующую. Образующая конуса соединяет его вершину с одной из точек на окружности основания конуса. Радиус также соединяет центр окружности с любой из точек на этой окружности. Поэтому можем изобразить радиус и высоту на рисунке так, как нам будет удобно использовать их для решения задачи. Пусть концы радиуса и образующей совпадают.Из рисунка хорошо видно, что из высоты, радиуса и образующей получается прямоугольный треугольник, к которому можно применить теорему Пифагора. Запишем уравнение для данного треугольника:
Значение высоты известно из условия, радиус можно найти через диаметр. Таким образом, вычислим значение образующей.Итак, найдем длину радиуса, зная, что диаметр равен 12 см:
(см).
Ответ. 10 см.
ru.solverbook.com
Основные свойства кругового конуса
1. Все образующие прямого кругового конуса равны между собой. 2. При вращении прямоугольного треугольника вокруг своего катета на 360 ° образуется прямой круговой конус. 3. При вращении равнобедренного треугольника вокруг своей оси на 180 ° образуется прямой круговой конус. 4. В месте пересечения конуса плоскостью, параллельной основанию конуса, образуется круг. (см. Срезанный конус) 5. Если при пересечении плоскость не параллельна основе конуса и не пересекается с основанием, то в месте пересечения образуется эллипс (рис. 3). 6. Если плоскость сечения проходит через основание, то в месте пересечения образуется парабола (рис. 4). 7. Если плоскость сечения проходит через вершину, то в месте пересечения образуется равнобедренный треугольник (см. Осевое сечение).8. Центр тяжести любого конуса находится на одной четвертой высоты от центра основы.