Как найти площадь сектора круга

Длина дуги

      Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Рис.3

Рис.3

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Видео

Видео

Площадь сегмента круга по хорде и высоте

Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h — высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».

Тогда можно приближённо считать, что

Погрешность такого вычисления уменьшается вместе с отношением .

В частности, когда дуга содержит угол, меньший 50º, то есть, 

погрешность оказывается менее 1%.

Более точной является формула для любого сегмента меньшего полукруга:

Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.

Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).

Отсюда следует, что

Задача

Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а 

.

Решение.

Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса). 

Отсюда следует, что:

Площадь по первой формуле будет приблизительно равна

По второй:

Применяя точную формулу и учитывая, что

находим:

Ответ: Sсегм = 1,26 см2.

Площадь круга подробнее

\( \displaystyle \ S=\pi {{R}^{2}}\),

\( \displaystyle R\) — радиус,\( \displaystyle \pi \) – число \( \displaystyle \approx 3,1415\)

Производит впечатление? Представляешь, сколько времени математики думали, пока не додумались, что…

…площадь круга радиуса \( \displaystyle R\) ровно (!) в \( \displaystyle \pi \) раз больше площади квадрата со стороной \( \displaystyle R\).

Ну вот, а теперь – площадь части круга.

Площадь сектора круга через радиус и угол сектора

Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:

Задача

Решение.

Центральный угол изображённого сектора равен

360° — 90° = 270°

Подставляя в формулу величины, несложно получить искомый результат:

Ответ: Sсект = 27 см2.

Также аналогичным образом решаются обратные задачи.

Сектор круга. Площадь сектора

Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:

Чтобы найти площадь сектора, дуга которого содержи

Чтобы найти площадь сектора, дуга которого содержит  ,  надо площадь круга разделить на  360  и полученный результат умножить на  n.

Формула площади сектора:

Формула площади сектора:

Sπr2 · nπr2n,
360360

где  S  — площадь сектора. Выражение

πr2n
360

можно представить в виде произведения

πr2n = n · πr · r,
3601802
где  nπr  — это длина дуги сектора.
180

Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:

Ssr,
2

где  S  — это площадь сектора,  s  — длина дуги данного сектора,  r  — радиус круга.

Формулы площади кругового сектора

Площадь кругового сектора выражается через центральный угол дуги. Как известно, угол может быть задан в радианной мере или в градусной.

Обозначим:

  • центральный угол, выраженный в угловых градусах — α;
  • длину дуги —L;
  • радиус — R.

Тогда выражение для вычисления площади кругового сектора через радиус и длину дуги будет иметь вид:

Формула 1

S=R·L2

Из курса геометрии (8-9 классы) известно следующее выражение для нахождения длины дуги сектора круга:

Формула 2

L=αрад·R где αрад — центральный угол, Рад.

Узнаем, как найти площадь сектора через центральный угол, заданный в радианах. Для этого подставим в выражение для L в формулу площади.

Формула 3

S=R·L2=R·αрад·R2=αрад·R22

Теперь переведем угол в радианах в градусы и приведем соответствующую формулу для расчета площади.

Формула 4

S=αрад·R22=R2·α·π2·180°=παR2360°

Формула площади сектора круга по радиусу и длине дуги

S=12rlS=\frac{1}{2}\cdot r\cdot lS=21rl

rrr — радиус круга; lll — длина дуги.

Рассмотрим решение задачи.

Пример

Найдите площадь кругового сектора, если известно, что длина дуги равна 20 (см.), а радиус круга равен 5 (см.).

Решение

r=5r=5r=5 l=20l=20l=2

В данной задаче сразу можно подставить наши числа в исходную формулу и вычислить площадь: S=12rl=12520=50S=\frac{1}{2}\cdot r\cdot l=\frac{1}{2}\cdot 5\cdot 20=50S=21rl=2152=5 (см. кв.)

Ответ: 50 см. кв.

Формулы нахождения площади сектора круга

Через длину дуги и радиус круга

Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).

Через угол сектора (в градусах) и радиус круга

Через угол сектора (в градусах) и радиус круга

Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах (α°) и деленной на 360°.

Через угол сектора (в радианах) и радиус круга

Через угол сектора (в радианах) и радиус круга

Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.

Площадь других частей круга

Иногда бывает, что нужно посчитать площадь какой-нибудь странной части круга. Эта часть может не быть ни сектором, ни сегментом.

Как тогда быть?

Давай рассмотрим два примера.

Площадь сектора

      Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Рис.4

Рис.4

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Теги

Теги

Популярные:

Последние:

Adblock
detector