Содержание материала
- Длина дуги
- Видео
- Площадь сегмента круга по хорде и высоте
- Задача
- Площадь круга подробнее
- Площадь сектора круга через радиус и угол сектора
- Задача
- Сектор круга. Площадь сектора
- Формулы площади кругового сектора
- Формула площади сектора круга по радиусу и длине дуги
- Формулы нахождения площади сектора круга
- Через длину дуги и радиус круга
- Через угол сектора (в градусах) и радиус круга
- Через угол сектора (в радианах) и радиус круга
- Площадь других частей круга
- Площадь сектора
Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
Рис.3
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео
Площадь сегмента круга по хорде и высоте
Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h — высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».
Тогда можно приближённо считать, что
Погрешность такого вычисления уменьшается вместе с отношением .
В частности, когда дуга содержит угол, меньший 50º, то есть,
погрешность оказывается менее 1%.
Более точной является формула для любого сегмента меньшего полукруга:
Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.
Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).
Отсюда следует, что
Задача
Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а
.
Решение.
Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса).
Отсюда следует, что:
Площадь по первой формуле будет приблизительно равна
По второй:
Применяя точную формулу и учитывая, что
находим:
Ответ: Sсегм = 1,26 см2.
Площадь круга подробнее
\( \displaystyle \ S=\pi {{R}^{2}}\),
\( \displaystyle R\) — радиус,\( \displaystyle \pi \) – число \( \displaystyle \approx 3,1415\)

Производит впечатление? Представляешь, сколько времени математики думали, пока не додумались, что…
…площадь круга радиуса \( \displaystyle R\) ровно (!) в \( \displaystyle \pi \) раз больше площади квадрата со стороной \( \displaystyle R\).

Ну вот, а теперь – площадь части круга.
Площадь сектора круга через радиус и угол сектора
Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:
Задача
Решение.
Центральный угол изображённого сектора равен
360° — 90° = 270°
Подставляя в формулу величины, несложно получить искомый результат:
Ответ: Sсект = 27 см2.
Также аналогичным образом решаются обратные задачи.
Сектор круга. Площадь сектора
Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:
Чтобы найти площадь сектора, дуга которого содержит n°, надо площадь круга разделить на 360 и полученный результат умножить на n.
Формула площади сектора:
S = | πr2 | · n = | πr2n | , |
360 | 360 |
где S — площадь сектора. Выражение
πr2n |
360 |
можно представить в виде произведения
πr2n | = n · | πr | · | r | , |
360 | 180 | 2 |
где | nπr | — это длина дуги сектора. |
180 |
Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:
S = | sr | , |
2 |
где S — это площадь сектора, s — длина дуги данного сектора, r — радиус круга.
Формулы площади кругового сектора
Площадь кругового сектора выражается через центральный угол дуги. Как известно, угол может быть задан в радианной мере или в градусной.
Обозначим:
- центральный угол, выраженный в угловых градусах — α;
- длину дуги —L;
- радиус — R.
Тогда выражение для вычисления площади кругового сектора через радиус и длину дуги будет иметь вид:
S=R·L2
Из курса геометрии (8-9 классы) известно следующее выражение для нахождения длины дуги сектора круга:
L=αрад·R где αрад — центральный угол, Рад.
Узнаем, как найти площадь сектора через центральный угол, заданный в радианах. Для этого подставим в выражение для L в формулу площади.
S=R·L2=R·αрад·R2=αрад·R22
Теперь переведем угол в радианах в градусы и приведем соответствующую формулу для расчета площади.
S=αрад·R22=R2·α·π2·180°=παR2360°
Формула площади сектора круга по радиусу и длине дуги
S=21⋅r⋅l
r — радиус круга; l — длина дуги.
Рассмотрим решение задачи.
Найдите площадь кругового сектора, если известно, что длина дуги равна 20 (см.), а радиус круга равен 5 (см.).
Решение
r=5 l=2
В данной задаче сразу можно подставить наши числа в исходную формулу и вычислить площадь: S=21⋅r⋅l=21⋅5⋅2=5 (см. кв.)
Ответ: 50 см. кв.
Формулы нахождения площади сектора круга
Через длину дуги и радиус круга
Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).
Через угол сектора (в градусах) и радиус круга
Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах (α°) и деленной на 360°.
Через угол сектора (в радианах) и радиус круга
Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.
Площадь других частей круга
Иногда бывает, что нужно посчитать площадь какой-нибудь странной части круга. Эта часть может не быть ни сектором, ни сегментом.
Как тогда быть?
Давай рассмотрим два примера.
Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
Рис.4
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство: