Как найти область определения и область значений функции

Что такое функция в алгебре

Определение

Функция в алгебре — некое математическое выражение y=f(x), где каждому значению переменной x соответствует одно значение переменной y.

Из этого следует, что решений у функции может быть много. Для обозначения совокупностей таких решений вводятся особые термины.

Определние

Множество значений функции y=f(x) — совокупность значений переменной y, которые она принимает при переборе всех значений переменной x на заданном отрезке X.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Областью значений функции y=f(x) называется такое множество значений, которые функция y принимает при переборе всех значений аргумента x из области определения. Область значений обозначается как E(f).

Определение

Область допустимых значений (область определения) функции — такое множество всех значений переменных, при которых функция имеет смысл, то есть решается.

Область значений функции вместе с областью ее определения формирует границы для отображения данной функции в виде графика.

Видео

Область определения показательной функции

Показательная функция записывается как: y=kx

где значение x — показатель степени;

k — число, которое обязательно больше нуля и не равно единице.

Область определения показательной функции — это множество значений R.

Основные примеры показательных функций:

Область определения, для этих функций, записываетс

Область определения, для этих функций, записывается следующим образом: (−∞, +∞).

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = xy и другие.

А области их определения изучаем, как свойства.

Как найти область значений функции по уравнению

Нахождение области значений функции по заданному уравнению также сводится к вычислению экстремумов.

Рассмотрим два случая:

  1. Нахождение области значений функции, непрерывной на некотором заданном отрезке.
  2. Нахождение области значений функции, непрерывной на некотором интервале. Сюда же отнесем случаи, когда функция не существует в какой-либо точке. Например, точка нуля знаменателя, в которой функция не существует, а область определения терпит разрыв.

Алгоритм поиска области значений для первого случая:

  1. Находим производную функции.
  2. Приравниваем производную к нулю, находим корни уравнения f′(x)=0 и точки, в которых производная не существует — критические точки.
  3. Отмечаем корни, критические точки и границы заданного интервала на прямой и определяем знаки производной на каждом получившемся промежутке.
  4. Находим минимумы и максимумы функции. Если в некоторой точке x1 производная меняет знак с «+» на «-», то точка x1 — максимум, если с «-» на «+» — минимум.
  5. Подставляя значения аргументов для минимума и максимума функции в выражение f(x), находим минимальное и максимальное значения функции. В том случае, если имеются точки, в которых производная не существует, значение функции вычисляем через пределы по формулам: limxx1f(x)   и limxx1+f(x).
  6. Записываем область значений функции.

Для второго случая:

  1. Находим производную, приравниваем ее к нулю и определяем знаки производной на каждом промежутке.
  2. Определяем значение функции в каждой из точек. Для определения значения функции в граничных точках, а также в точках разрыва или точках, в которых производная не существует, вычисляем пределы функции аналогично указанным в пункте 5 для первого случая.
  3. Определяем и записываем область значений.

Методы нахождения

Поиск области значений функции несколько сложнее, чем определение ОДЗ. В зависимости от вида и типа функции, а также условий задачи для этого могут применяться различные методы.

Перебор значений

Самый простой и ограниченный способ. При его помощи можно находить область значений на небольшом промежутке целых чисел \(x\in(a;\;b)\). В таком случае заданные значения переменной поочередно подставляются в уравнение и вычисляются значения функции, соответствующие им.

Графический метод

Как ясно из названия способа, для его реализации необходимо построить график исследуемой функции. По внешнему виду кривой уже можно делать некоторые выводы. Если линия графика соответствует одному из видов элементарных функций, например, является параболой, то в качестве области значений берется промежуток, соответствующий данному графику.

Примечание

Если по условию задачи необходимо найти область значений функции на определенном промежутке значений переменной x, то на графике максимальные и минимальные точки становятся очевидными. Это могут быть как общие точки экстремума, так и локальные максимальные и минимальные значения.

Учет непрерывности и монотонности

Данный метод вытекает из предыдущего и позволяет делать некоторые прогнозы об области значений функции исходя из ее свойств. Если на графике видно, что функция не прерывается и монотонно убывает или возрастает на определенном промежутке, можно предположить, что эта тенденция сохранится и дальше.

Например, график квадратичной функции f(x)=x^2 имеет вид параболы с точкой перегиба с координатами (0, 0). Кривая непрерывна, то есть не имеет разрывов в области определения. Для того, чтобы определить область значений данной функции, достаточно построить ее график на ограниченном промежутке. Для примера возьмем \(x\in\lbrack-4;\;4\rbrack\):

Рисунок 1. Значение непрерывности и монотонности функции для области определения

На графике видно, что функция монотонно убывает на промежутке \(\lbrack-4;\;0\rbrack\) и монотонно возрастает на промежутке\( \lbrack0;\;4\rbrack\). Исходя из этого и непрерывности функции, можно экстраполировать данную закономерность на всю область определения. Так как минимальное значение данной функции равняется нулю, область значений будет следующей:

\(\mathrm E(\mathrm f)=\lbrack0;\;+\infty)\)

Производная, min и max

Описанные выше способы подходят не для всех ситуаций. В общем случае, задача по определению области значений функции всегда сводится к нахождению ее минимального и максимального значения или точек экстремума.

Определение

Согласно теореме Ферма, в точках локального экстремума производная исследуемой функции равняется нулю.

Важно понимать, что сами локальный экстремум не обязательно является максимумом или минимумом для функции в целом. Такие точки называются критическими или стационарными. Поэтому, кроме самих точек необходимо определять промежутки возрастания и убывания:

  • если при переходе через критическую точку производная функции меняет знак с (+) на (-), то эта точка является максимумом;
  • если при переходе через критическую точку производная меняет знак с (-) на (+), то такая точка является минимумом;
  • если при переходе знак производной не меняется, то экстремума в данной точке нет.

Кроме того, экстремумы функции можно определять по второй производной. Предположим, при исследовании функции обнаружилась некая критическая точка x_1. Для нее справедливы следующие неравенства:

Если \(f»(x_1)>0\), то \(x_1\) — точка минимума.

Если \(f»(x_1)<0\), то \(x_1\) — точка максимума.

Дробная функция

Определение:рациональной $f(x)=\dfrac{a_nx^n+\cdots+a_1x+a_0}{b_nx^n+\cdots+b_1x+b_0}=\dfrac{P(x)}{Q(x)}$ $D_f=\mathbb{R} — \lbrace x| Q(x)=0 \rbrace$ Пример:Решение: $x^2-1=0 \rightarrow x=\pm 1$ $D_f=\mathbb{R}- \lbrace \pm 1 \rbrace$ $y(x^2-1)=x^2+1 \rightarrow yx^2-x^2=y+1 \rightarrow x^2=\dfrac{y+1}{y-1} \\ \rightarrow x= \pm \sqrt{\dfrac{y+1}{y-1}} \rightarrow \dfrac{y+1}{y-1} \geq 0 \\ \rightarrow y \leq -1 \,\, or \,\, y > 1 \rightarrow R_f=(-\infty,-1] \cup (1,+\infty).$ 
Пример:Решение: $x^2-2x+1=0 \rightarrow (x-1)^2=0 \rightarrow x=1 \rightarrow D_f=\mathbb{R}-\lbrace 1 \rbrace$ $y=\dfrac{x^2+3x-4}{(x-1)^2}=\dfrac{x+4}{x-1} \rightarrow xy-y=x+4 \rightarrow x=\dfrac{y+4}{y-1} \rightarrow R_f=\mathbb{R}- \lbrace 1 \rbrace$ 
Пример:Решение: $x(x+1)(x^2-4)=0 \rightarrow x=0 \,\,,\,\, x=-1 \,\,,\,\, x= \pm 2 \rightarrow D_f=\mathbb{R}-\lbrace 0,-1 , \pm 2 \rbrace$ $f(x)=\dfrac{1}{x-2}$ $f(0)=-\dfrac{1}{2} \,\,,\,\, f(-1)=-\dfrac{1}{3} \,\,,\,\, f(-2)=-\dfrac{1}{4}$ $y=\dfrac{1}{x-2} \rightarrow x=\dfrac{1}{y}+2$ $R_f=\mathbb{R}-\lbrace -\dfrac{1}{2},-\dfrac{1}{3},-\dfrac{1}{4},0 \rbrace$

Разница между областью значения и областью определения функции

Стоит обратить внимание, что область значений функции — не одно и то же с термином «область определения функции».

Определение 3

Область определения функции $D(y)$ — это диапазон таких значений переменной $x$, при которых существует функция $y(x)$.

Например, рассмотрим функцию $y(x)=x^2$. В данном случае область определения этой функции будет множеством вещественных (действительных) чисел $\mathbb{R}$, а сама функция будет принимать значения только положительных действительных чисел $\mathbb{R}^+$, так как вещественное число, возведённое в квадрат, не может давать отрицательное значение. То есть, в этом примере множество значений функции — это множество положительных вещественных чисел $\mathbb{R}^+$.

Также имеют место случаи, когда область определения функции совпадает с областью значений. В качестве иллюстрации можно рассмотреть функцию $y(x)=2x$. За аргумент $x$ данная функция может принимать любое действительное число из множества $\mathbb{R}$, а значения, которые будет принимать сама функция — это удвоенные числа из множества всех действительных чисел. То есть, в данном случае областью значений $E(y)$ будет также всё множество вещественных чисел $\mathbb{R}$.

Получи деньги за свои студенческие работы Курсовые, рефераты или другие работы

Теги

Популярные:

Последние: