Как найти координаты точки пересечения графиков функций?

Мой способ

Собираем воедино

Как найти координаты, примеры решения

Существует несколько способов решения подобных задач:

  1. Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
  2. Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
  3. Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.

В качестве примера можно рассмотреть две линейные функции:

\(f(x) = k_1 x+m_1\)

\(g(x) = k_2 x + m_2\)

Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения \(x_1\) и \(x_2\) и найти \(f(x_1)\) и \((x_2)\). Далее действия необходимо повторить с функцией \(g(x)\). Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.

Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда \(k_1 \neq k_2\). В противном случае \(k_1=k_2\), а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При\( k_1 \neq k_2\) и \(m_1=m_2\) точка пересечения будет соответствовать \(M(0;m)\). Данная закономерность упрощает решение многих подобных задач.

Задача № 1

Имеются функции: \(f(x) = 2x-5\)

\(g(x)=x+3\)

Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.

Решение

В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:

\(k_1 = 2\)

\(k_2 = 1\)

Заметим, что:

\(k_1 \neq k_2\)

По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:

\(f(x)=g(x)\)

\(2x-5 = x+3\)

Необходимо перенести члены с x в левую часть, а остальные — в правую:

\(2x — x = 3+5\)

\(x = 8\)

В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в \(f(x)\), либо в \(g(x)\):

\(f(8) = 2\cdot 8 — 5 = 16 — 5 = 11\)

Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.

Ответ: M (8;11)

Задача № 2

Записаны две функции: \(f(x)=2x-1\)

\(g(x) = 2x-4.\)

Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.

Решение

Угловые коэффициенты:

\(k_1 = k_2 = 2\)

Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.

Ответ: графики функций параллельны, точки пересечения отсутствуют.

Задача № 3

Требуется определить координаты точки, в которой пересекаются графики следующих функций: \(f(x)=x^2-2x+1\)

\(g(x)=x^2+1\)

Решение

В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:

\(x^2-2x+1=x^2+1\)

Далее необходимо разнести в разные стороны уравнения члены с x и без него:

\(x^2-2x-x^2=1-1\)

\(-2x=0\)

\(x=0\)

Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить \(x = 0\) в какое-либо из двух начальных уравнений. К примеру:

\(f(0)=0^2-2\cdot 0 + 1 = 1\)

M (0;1) является точкой, в которой пересекаются графики функций.

Ответ: M (0;1)

Видео

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 \neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ — это коэффициент угла наклона. Если $ k_1 \neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 \neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

$$ 2x-5 = x+3 $$

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

$$ 2x — x = 3+5 $$

$$ x = 8 $$

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2\cdot 8 — 5 = 16 — 5 = 11 $$

Итак, $ M (8;11) $ — является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M (8;11) $$
Пример 2
Дано $ f(x)=2x-1 $ и $ g(x) = 2x-4 $. Найти точки пересечения графиков функций.
Решение
Как найти? Опять же обращаем внимание на то, что угловые коэффициенты равны $ k_1 = k_2 = 2 $. Это означает, что линейные функции параллельны между собой, поэтому у них нет точек пересечения!
Ответы
Графики функций параллельны, нет точек пересечения.

Найти точку пересечения графиков линейных функций — Науколандия

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент (k) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3x + 8 и y = 2.1x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:Даны y = 4x – 5 и y = –2x + 14x – 5 = –2x + 14x + 2x = 1 + 56x = 6x = 1y = 4 * 1 – 5 = –1 или y = –2 * 1 + 1 = –1

Таким образом точка пересечения (1; –1).

Третий способ

Готовые работы на аналогичную тему

Курсовая работа Как найти координаты точек пересечения графика функции: примеры решения 410 ₽ Реферат Как найти координаты точек пересечения графика функции: примеры решения 240 ₽ Контрольная работа Как найти координаты точек пересечения графика функции: примеры решения 230 ₽

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.

Методики нахождения точек

Чтобы узнать, пересекаются ли графики функций, нужно приравнять соответствующие тождества, а затем решать уравнение. Однако при такой операции могут получиться различные равенства с неизвестными. В этом случае требуется обратить внимание на нижеописанные методики решения для каждого вида.

Первой и второй степени

Уравнение первой степени, или линейное, решается очень просто. Для этого необходимо перенести переменные величины в одну, а известные — в другую сторону. Методика решения имеет следующий вид:

  1. Раскрыть скобки и привести подобные коэффициенты.
  2. Выполнить перенос известных в одну, а неизвестных — в другую часть равенства.
  3. Произвести необходимые математические преобразования.
  4. Найти корень.

Сложнее решается квадратное уравнение. Существует несколько способов нахождения его корней:

  1. Разложить на множители.
  2. Выделить полный квадрат.
  3. Найти дискриминант.
  4. По теореме Виета.

Первый способ применяется довольно часто, поскольку с его помощью можно понижать степень при неизвестной величине. Второй подразумевает выделение квадрата по одной из формул сокращенного умножения. Чтобы воспользоваться одним из двух методов, необходимо знать соответствующие тождества (правила разложения на множители).

Однако не всегда можно быстро решить квадратное уравнение при помощи первых двух методов. Еще один вариант — нахождение корней через дискриминант (Д), т. е. дополнительный параметр, позволяющий сразу находить решения. Он находится по следующей формуле: Д=(-S)^2 -4PU.

Следует отметить, что при Д>0 переменная принимает два значения, которые превращают равенство в истину. Если Д=0, то корень только один. Когда Д<0, искомое тождество с неизвестными вообще не имеет решений. Определить значение корней возможно по таким соотношениям: t1=[-S-(Д)^(1/2)]/2P и t2=[-S+(Д)^(1/2)]/2P, где t1 и t2 — точки пересечения с осью абсцисс.

Если коэффициент при второй степени (P) эквивалентен 1, то дискриминант можно не высчитывать, а воспользоваться сокращенным вариантом решения — теоремой Виета. Суть ее заключается в подборе корней по таким формулам: t1+t2=-S и t1*t2=U. Иногда для реализации этой методики нужно сократить обе части на коэффициент Р. Алгоритм решения квадратных уравнений имеет следующий вид:

  1. Выполнить при необходимости различные алгебраические преобразования (раскрыть скобки и привести подобные слагаемые).
  2. Выбрать один из способов решения и реализовать его.
  3. Проверить корни, подставив их в исходное выражение.

Следует отметить, что распространенная ошибка новичков — отсутствие проверки. В результате неправильных действий образуются ложные корни, а оценка на контрольной, зачете или экзамене существенно снижается.

Кубические и биквадратные

Решение тождеств кубического и биквадратного типов с неизвестными осуществляется двумя способами. К ним относятся:

  1. Понижение степени (разложение на множители).
  2. Замена переменной.

В первом случае необходимо выполнить преобразования, которые позволят применить одну из формул сокращенного умножения. Однако этот метод применяется довольно редко, поскольку математики отдают предпочтение второму способу. Для его реализации вводится дополнительная переменная, обладающая более низкой степенью и существенно упрощающая выражение. Алгоритм имеет такой вид:

  1. Выполняются необходимые математические преобразования.
  2. Выражается переменная через другую.
  3. Решается квадратное или линейное уравнение.
  4. Промежуточные корни, полученные в третьем пункте алгоритма, подставляются во второй.
  5. Вычисляются искомые корни.
  6. Осуществляется проверка.
  7. Отсеиваются ложные решения, и записывается ответ.

Для проверки рекомендуется воспользоваться онлайн-приложениями, позволяющими вычислить корни, а также построить графики функций. Кроме того, для кубического многочлена Pt 3 +St 2 +Ut+V=0 существует еще одна методика нахождения корней. Она имеет следующий вид:

  1. Уравнение требуется разделить на P.
  2. Осуществить замену: t=m-(S/(3P)). При этом получается тождество вида m^3 +km+l=0.
  3. Найти значение коэффициентов по формулам: k=[2S 3 -9PSU+27(P 2 )V] / (27P 3 ) и l=[(3PU-S 2 )/(3P 2 )]. Подставить их во второй пункт и найти промежуточные корни, при помощи которых найти основные значения переменных.

Следует отметить, что важным пунктом методики является правильный выбор выражения замены, а затем верное выполнение математических преобразований.

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости Охуz уравнениями пересекающихся плоскостей, то имеется прямая a , которая  может быть определена при помощи заданной системы A1x+B1y+C1z+D1=A2x+B2y+C2z+D1= а прямая bA3x+B3y+C3z+D3=A4x+B4y+C4z+D4=.

Когда точка М является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A1x+B1y+C1z+D1=A2x+B2y+C2z+D2=A3x+B3y+C3z+D3=A4x+B4y+C4z+D4=

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x-1=y+2z+3= и 3x+2y+3=4x-2z-4= Решение Составляем систему x-1=y+2z+3=3x+2y+3=4x-2z-4= и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A=112324-2 и расширенную T=1112-34-24. Определяем ранг матрицы по Гауссу. Получаем, что 1=1≠, 11=1≠, 11232=-4≠, 1112-332-34-24= Отсюда следует, что ранг расширенной матрицы имеет значение 3. Тогда система уравнений  x-1=y+2z+3=3x+2y+3=4x-27-4= в результате дает только одно решение. Базисный минор имеет определитель 11232=-4≠, тогда последнее уравнение не подходит. Получим, что x-1=y+2z+3=3x+2y+3=4x-2z-4=⇔x=1y+2z=-33x+2y-3 . Решение системы x=1y+2z=-33x+2y=-3⇔x=1y+2z=-33·1+2y=-3⇔x=1y+2z=-3y=-3⇔⇔x=1-3+2z=-3y=-3⇔x=1z=y=-3. Значит, имеем, что точка пересечения x-1=y+2z+3= и 3x+2y+3=4x-2z-4=   имеет координаты (1, -3, ). Ответ: (1, -3, ).

Система вида A1x+B1y+C1z+D1=A2x+B2y+C2z+D2=A3x+B3y+C3z+D3=A4x+B4y+C4z+D4= имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A1x+B1y+C1z+D1=A2x+B2y+C2z+D2=A3x+B3y+C3z+D3=A4x+B4y+C4z+D4= решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x+2y-3z-4=2x-y+5= и x-3z=3x-2y+2z-1=. Найти точку пересечения. Решение Для начала составим систему уравнений. Получим, что x+2y-3z-4=2x-y+5=x-3z=3x-2y+2z-1= . решаем ее методом Гаусса: 12-342-1-51-33-221~12-34-56-13-2-4-811-11~~12-34-56-13-1256575-1595~12-34-56-13-1256531110 Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет. Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x=-3-λy=-3·λz=-2+3·λ, λ∈R и x2=y-3=z5 в Охуz. Найти точку пересечения. Решение Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что x=-3-λy=-3·λz=-2+3·λ⇔λ=x+3-1λ=y-3λ=z+23⇔x+3-1=y-3=z+23⇔⇔x+3-1=y-3x+3-1=z+23⇔3x-y+9=3x+z+11=x2=y-3=z5⇔y-3=x2=z5⇔y-3=5x-2z= Находим координаты 3x-y+9=3x+z+11=y-3=5x-2z=, для этого посчитаем ранги матрицы. Ранг матрицы равен 3, а базисный минор 3-1311=-3≠, значит, что из системы необходимо исключить последнее уравнение. Получаем, что 3x-y+9=3x+z+11=y-3=5x-2z=⇔3x-y+9=3x+z+11=y-3= Решим систему методом Крамер. Получаем, что x=-2y=3z=-5. Отсюда получаем, что пересечение заданных прямых дает точку с координатами (-2, 3, -5). Ответ: (-2, 3, -5).

Всё ещё сложно? Наши эксперты помогут разобраться Все услуги

Теги

Популярные:

Последние: