Как найти координаты точки пересечения двух прямых

Как найти точку пересечения двух прямых на плоскости?

Пусть даны две прямые, заданные уравнениями Если наши прямые не параллельны, то они пересекают и Если наши прямые не параллельны, то они пересекают Найдём точку пересечения этих прямых.

Если наши прямые не параллельны, то они пересекаются в точке, координаты которой должны удовлетворять уравнениям обеих прямых. Поэтому чтобы найти точку пересечения прямых, надо решить систему уравнений

Эта система имеет единственное решение, если  Если

Эта система имеет единственное решение, если Пример Если же Пример то прямые параллельны и не пересекаются.

Пример

Найти точку пересечения прямых 
и 
Решение: Решаем систему уравнений

Подставляем в первое уравнение системы  получаем:

Подставляем в первое уравнение системы Ответ: прямые пересекаются в точке  получаем: Ответ: прямые пересекаются в точке  Отсюда Ответ: прямые пересекаются в точке  Поэтому Ответ: прямые пересекаются в точке

Ответ: прямые пересекаются в точке

Точка пересечения двух прямых на плоскости

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Решение: Для вычисления координат точки пересечени

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x – 1 y = -3 x + 1

Вычтем из первого уравнения второе

y – y = 2 x – 1 – (-3 x + 1) y = -3 x + 1 => 0 = 5 x – 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Решение: Для вычисления координат точки пересечени

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x – 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) – 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = – 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = – 1 3 x = 2·(- 1 3 ) + 1 = – 2 3 + 1 = 1 3 y = – 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , – 1 3 )

Решение: Для вычисления координат точки пересечени

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x – 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x – 2 3

Подставим y в первое уравнение

2 x + 3·4· x – 2 3 = 0 y = 4· x – 2 3 => 2 x + 4·( x – 2) = 0 y = 4· x – 2 3 =>

2 x + 4 x – 8 = 0 y = 4· x – 2 3 => 6 x = 8 y = 4· x – 2 3 =>

x = 8 6 = 4 3 y = 4· x – 2 3 => x = 8 6 = 4 3 y = 4· 4/3 – 2 3 = 4· -2/3 3 = – 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , – 8 9 )

Решение: Обе прямые заданы уравнениями с угловым к

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x – 1 y = 2 x + 1

Вычтем из первого уравнения второе

y – y = 2 x – 1 – (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений – отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Решение: Подставим координаты точки N в уравнения

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N – точка пересечения этих прямых.

Видео

Угол пересечения прямых

Угол пересечения прямых — это угол пересечения направляющих векторов. Т.е., взяв уже знакомые ранее точки p1 и p2, получим направляющий вектор V(p1,p2), и аналогично второй вектор M(p3,p4). В теории мы должны вычислить достаточно «затратную» функцию, с корнями, квадратами, дробями и арккосинусом.

Давайте не будем останавливаться на ней, она долгая, нудная и в нашем случае ненужная. Рассмотрим вектор:

Рис.4. Вектор V(p1,p2)
Рис.4. Вектор V(p1,p2)

α — угол наклона вектора к оси X, который можно найти, как:

α = arctan (A1 / B1)

Где расстояния:

A1 = (y1 — y2)

B1 = (x2 — x1)

Что-то знакомое? Да это ни что иное, как коэффициенты в уравнении прямой от образованных фанатов. Может они и правы в своем испепеляющем фанатизме…

Одним словом, коэффициенты (расстояния) у нас уже есть по обеим прямым.

Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p
Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p3,p4)

Судя по рисунку, угол между векторами, это сумма углов наклона векторов к оси X. Ммм… не совсем так, на самом деле это разность.

Рис.6. Пересекающиеся векторы в положительной Y
Рис.6. Пересекающиеся векторы в положительной Y

По рисунку явно видно, что угол между векторам это γ = (βα).

В предыдущем примере все правильно, просто знаки углов разные, т.к. находятся по разные стороны от оси X, а формула работает та же.

Система уравнений

Как правило, подобная система уравнений решается путем выражения одной переменной через другую, подстановкой во второе уравнение, получая таким образом уравнение одной переменной. Далее переменная находится, подставляется, решается. Или определяется, что система решения не имеет.

Но нас интересует метод Крамера. Потому что с помощью этого метода можно получить сразу значения для обеих переменных, без дополнительных телодвижений.

Сразу же запишем метод под нашу систему.

Имеем следующую систему:

Определители будут такими:

Определители будут такими:

Исходя из метода, решение выглядит так:

Исходя из метода, решение выглядит так:

Ага! Вот и возможное деление на ноль, скажете вы.

Ага! Вот и возможное деление на ноль, скажете вы. И правильно! В этой, в высшей степени непозволительной ситуации, когда знаменатель равен нулю, решения нет, прямые либо параллельны, либо совпадают (что, впрочем, частный случай параллельности).  В коде, естественно, этот момент надо учитывать.

Класс Intersections

Исходник представляет собой два класса: класс вычисления точки пересечения прямых и информационный класс выдающий множество дополнительных сведений о свойствах исследуемых прямых.

Прикрепленный файл

Прикрепленный файл архива содержит исходник классов Intersections, Info и программу демонстрирующую работу класса Intersections в режиме вычисления точки пересечения прямых на плоскости. Исходный код написан на языке C#, но его легко можно преобразовать в код на другом языке программирования. Для работы демонстрационной программы необходима установка платформы. .NET Core 3.1.

Теги

Популярные:

Последние: