Содержание материала
Арифметическая прогрессия коротко о главном
Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна \( \displaystyle d\).
Например:

- \( {{a}_{1}}=3\)
- \( \displaystyle {{a}_{2}}=3+d=7~\Rightarrow d=7-3=4\)
- \( \displaystyle {{a}_{3}}=7+4=11\) и т.д.
Арифметическая прогрессия бывает возрастающей (\( \displaystyle d>0\)) и убывающей (\( \displaystyle d<0\)).
\( {{a}_{n}}={{a}_{1}}+d\left( n-1 \right)\) , где \( \displaystyle n\)– количество чисел в прогрессии.
\( {{\text{a}}_{\text{n}}}=\frac{{{\text{a}}_{\text{n}+1}}+{{\text{a}}_{\text{n}-1}}}{2}\) — где \( \displaystyle n\) – количество чисел в прогрессии.
1-й способ: \( {{S}_{n}}=\frac{\left( {{a}_{1}}+{{a}_{n}} \right)\cdot n}{2}\), где \( \displaystyle n\) – количество значений.
2-й способ: \( \displaystyle {{s}_{n}}=\frac{2{{a}_{1}}+d\left( n-1 \right)}{2}\cdot n\), где \( \displaystyle n\) – количество значений.
Возрастающие и убывающие арифметические прогрессии
Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:
Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:
Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: \( \displaystyle 13;\text{ }8;\text{ }4;\text{ }0;\text{ }-4.\)
Проверим, какое получится \( \displaystyle 4\)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:
Заметим, что так как арифметическая прогрессия убывающая, то значение \( \displaystyle d\) будет отрицательным, ведь каждый последующий член меньше предыдущего.

Так как \( \displaystyle d=-5\), то:\( {{a}_{4}}=13-5\left( 4-1 \right)=13-15=-2\)
Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти \( \displaystyle 140\)-ой и \( \displaystyle 169\)-ый члены этой арифметической прогрессии.
Сравним полученные результаты:
Видео
Определение арифметической прогрессии
Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.
Рассмотрим основные определения и как найти арифметическую прогрессию.
Арифметическая прогрессия — это числовая последовательность a1, a2,…, an,… для которой для каждого натурального n выполняется равенство: an+1= an + d, где d — это разность арифметической прогрессии. |
Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d.
Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:

Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:

Арифметическая прогрессия бывает трех видов:
- Возрастающая — арифметическая прогрессия, у которой положительная разность, то есть d > 0.
Пример: последовательность чисел 11, 14, 17, 20, 23… — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0.
- Убывающая — арифметическая прогрессия, у которой отрицательная разность, то есть d < 0.
Пример: последовательность чисел 50, 48, 46, 44, 42… — это убывающая арифметическая прогрессия, так как ее разность d = –2 < 0.
- Стационарная — арифметическая прогрессия, у которой разность равна нулю, то есть d = 0.
Пример: последовательность чисел 23, 23, 23, 23, 23… — это стационарная арифметическая прогрессия, так как ее разность d = 0.
Экзамены — это почти всегда стресс. Подготовка к ЕГЭ по математике онлайн в школе Skysmart поможет снять волнение перед экзаменом и придаст уверенности в своих знаниях.
Арифметическая прогрессия второго порядка
ОпределениеПоследовательность чисел, при которой последовательность разностей образует арифметическую прогрессию, будет называться арифметической прогрессией второго порядка.
Примером такой прогрессии является последовательность квадратов натуральных чисел: 0, 1, 4, 9, 16, 25, 36… , потому что их разности будут составлять простую арифметическую прогрессию с шагом в 2: 1, 3, 5, 7, 9, 11…