Содержание материала
- Свойства хорды к окружности
- Видео
- Свойства хорд и дуг окружности
- Определения секущей и хорды окружности
- Произведение длин отрезков хорд и секущих
- Произведение длин отрезков хорд окружности
- Произведение длин отрезков секущих окружности
- Свойства хорды и центрального угла
- Отношения со вписанными углами
- Отрезки и прямые, связанные с окружностью. Теорема о бабочке
- Теоремы о длинах хорд, касательных и секущих
- Решение задач
Свойства хорды к окружности
- Если расстояния от центра окружности до хорд равны, то эти хорды равны. Верно и обратное — если хорды равны, то расстояния от центра окружности до этих хорд равны
- Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше. Верно и обратное
- Наибольшая возможная хорда является диаметром
- Серединный перпендикуляр к хорде проходит через центр окружности
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде. Верно и обратное — если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам. Верно и обратное — если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде. Верно и обратное — если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное — если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
- Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное — если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Видео
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | ![]() | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | ![]() | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | ![]() | Большая из двух хорд расположена ближе к центру окружности. |
Равные дуги | ![]() | У равных дуг равны и хорды. |
Параллельные хорды | ![]() | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
![]() Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
Диаметр, проходящий через середину хорды |
![]() Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. |
Равные хорды |
![]() Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
Хорды, равноудалённые от центра окружности |
![]() Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. |
Две хорды разной длины |
![]() Большая из двух хорд расположена ближе к центру окружности. |
Равные дуги |
![]() У равных дуг равны и хорды. |
Параллельные хорды |
![]() Дуги, заключённые между параллельными хордами, равны. |
Определения секущей и хорды окружности
Давай прежде всего вспомним, что такое секущая и хорда. Смотри на картинки.
Здесь\( \displaystyle AC\) – секущая окружности – начинается снаружи окружности и пересекает её в двух точках.

Здесь \( \displaystyle BC\) – хорда окружности – отрезок, соединяющий две точки на окружности.

Кстати, заметил ли ты, что на первом рисунке хорда \( \displaystyle BC\) является кусочком секущей \( \displaystyle AC\)?
Вот так всегда и бывает: если есть секущая, то один её кусок – хорда, а второй называется внешняя часть, ну, как у нас \( \displaystyle AB\) – она же снаружи, верно?
Что же мы должны знать о секущей и хорде окружности?
Всего-то 2-3-4 утверждения. Давай начнём с того, что ты, возможно, уже читал в разделе «Теорема синусов» и «Теорема косинусов» — с длины хорды в окружности.
Произведение длин отрезков хорд и секущих
Сейчас мы сформулируем очень важное, пожалуй, даже основное свойство хорд и секущих окружности.
Словами это свойство формулировать неудобно – получается длинно и некрасиво, поэтому ограничимся буквами.
Произведение длин отрезков хорд окружности
Для любых двух хорд окружности, проходящих через некоторую точку \( \displaystyle A\), выполняется: \( \displaystyle AB\cdot AC=AD\cdot AE\)

Произведение длин отрезков секущих окружности
Для любых двух секущих, проходящих через некоторую точку \( \displaystyle A\), выполняется: \( \displaystyle AB\cdot AC=AD\cdot AE\)

Вопрос первый: Почему мы сформулировали утверждения друг под другом столбиком?
Ответ: Утверждения очень похожи – если закрыть картинки и слова, то получится просто одно и то же – удивительно, не правда ли? Ну, и это сходство гораздо лучше видно, когда утверждения стоят рядом.
Вопрос второй: Как не перепутать, что на что умножать?
Свойства хорды и центрального угла
- Если хорды стягивают равные центральные углы, то эти хорды равны.
- Если хорды равны, то эти хорды стягивают равные центральные углы.
- Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
- Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.
Отношения со вписанными углами
Углы, вписанные в окружность, подчиняются следующим правилам:
Если углы, вписанные в окружность, опираются на одну и ту же линию, и их вершины расположены по одну сторону, то такие углы равны между собой.
- Если два вписанных в круг угла опираются на одну и ту же линию, но их вершины расположены по разные стороны этой прямой, то сумма таких углов будет равняться 180 градусам.
- Если два угла — центральный и вписанный — опираются на единую линию, и их вершины располагаются по одну сторону от неё, то величина вписанного угла будет равняться половине центрального.
- Вписанный угол, который опирается на диаметр круга, является прямым.
- Равные между собой по размеру отрезки стягивают равные центральные углы.
- Чем больше величина стягивающего отрезка, тем больше величина центрального угла, который она стягивает. И наоборот, меньшая по размеру линия стягивает меньший центральный угол.
- Чем больше центральный угол, тем больше величина отрезка прямой, который его стягивает.
Отрезки и прямые, связанные с окружностью. Теорема о бабочке
![]() |
![]() |
![]() |
![]() |
![]() |
Теоремы о длинах хорд, касательных и секущих
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Решение задач
При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:
- Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
- Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
- Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.
Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.