Как найти длину пути в физике

Кинематика

К оглавлению…

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начально

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость пути:

Средняя скорость перемещения:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получае

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движ

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изм

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорос

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, бр

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с выс

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске по

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошен

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движе

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движе

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Связь периода и частоты:

Линейная скорость при равномерном движении по окру

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выраж

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движени

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной и

Центростремительное ускорение находится по одной из формул:

 

 

Видео

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

\[\large \boxed{ S = \frac{ v^{2}_{0} — v^{2}}{2a} }\]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

\[ \large \begin{cases} S  = v_{0} \cdot t — \displaystyle \frac{a}{2} \cdot t^{2} \\ v  = v_{0} — a \cdot t \end{cases} \]

Импульс

К оглавлению…

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма век

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущ

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

 

 

График скорости равномерного движения

Т.к. скорость – это векторная величина, она характеризуется и модулем, и направлением. В зависимости от выбранного направления скорость по знаку может быть как положительной, так и отрицательной.

На рисунке 1 изображен динозавр, автомобиль и дом. Зададим ось координат $x$.

Рисунок 1. Положительная и отрицательная скорости.
Рисунок 1. Положительная и отрицательная скорости.

Если динозавр начнет двигаться к дому, то его скорость будет положительной, т.к. направление движения совпадает с направлением оси $x$. Если же динозавр направится к автомобилю, то его скорость будет отрицательной, т.к. направление движения противоположно направлению оси $x$.

Итак, график скорости равномерного движения имеет вид, представленный на рисунке 2.

Рисунок 2. График скорости равномерного движения.
Рисунок 2. График скорости равномерного движения.

Из графика видно, что скорость с течением времени не изменяется – она постоянна в любой выбранный момент времени. Из графика положительной скорости мы видим, что $\upsilon = 6 \frac{м}{с}$; из графика отрицательной — $\upsilon = -4 \frac{м}{с}$.

Зная скорость и время, мы можем рассчитать пройденный путь за определенный промежуток времени. Рассчитаем какой путь пройдет тело с положительной скоростью за $4 с$.

$$S = \upsilon t = 6 \frac{м}{с} \cdot 4 c = 24 м$.$

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути $\Delta s$ на отрезке времени от $t$ до $t + \Delta t$ находят как:

где $\langle v\rangle$ – средняя путевая скорость. При равномерном движении $\langle v\rangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

где a – постоянное ускорение, v – начальная скорость движения.

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Переходим к постоянному электрическому току:

Переходим к постоянному электрическому току:

Далее добавляем формулы по теме: “Магнитное поле э

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Электромагнитная индукция тоже важная тема для зна

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Ну и, конечно, куда же без электромагнитных колеба

Ну и, конечно, куда же без электромагнитных колебаний:

Примеры решения задач

Примеры решения задач

1. Самым быстрым животным на Земле считается гепард. Он способен развивать скорость до $120 \frac{км}{ч}$, но сохранять ее способен в течение короткого промежутка времени. Если за несколько секунд он не настигнет добычу, то, вероятнее всего, уже не сможет ее догнать. Найдите путь, который пробежит гепард на максимальной скорости за $3$ секунды.

Переведем единицы измерения скорость в СИ и решим задачу.

$120 \frac{км}{ч} = 120 \cdot \frac{1000 м}{3600 с} \approx 33 \frac{м}{с}$.

Дано:$\upsilon=120 \frac{км}{ч}$$t = 3 c$СИ:$\upsilon=33 \frac{м}{с}$

Найти:$S — ?$

Показать решение и ответ

Скрыть

Решение: Гепард двигается равномерно в течение 3 с. Путь, который он проходит за это время: $S = \upsilon t = 33 \frac{м}{с} \cdot 3 с \approx 100 м$ Ответ: $100 м$

2. Колибри – самые маленькие птицы на нашей планете. При полете они совершают около 4000 взмахов в минуту. Тем не менее, они способны пролетать очень большие расстояния. Например, некоторые виды данной птицы перелетают Мексиканский залив длиной $900 км$ со средней скоростью $40 \frac{км}{ч}$. Сколько времени у них занимает такой полет?

Переведем единицы измерения скорость в СИ и решим задачу.

$40 \frac{км}{ч} = 40 \cdot \frac{1000 м}{3600 с} \approx 11 \frac{м}{с}$;

$900 км = 900 000 м$.

Дано:$\upsilon_{ср} = 40 \frac{км}{ч}$$S = 900 км$CИ:$\upsilon_{ср} = 11 \frac{м}{с}$$S = 900 000 м$

Найти:$t-?$

Показать решение и ответ

Скрыть

Решение: Полет колибри будет примером неравномерного движения. Зная среднюю скорость и путь, рассчитаем время перелета: $t = \frac{s}{\upsilon_{ср}} = \frac{900 000 м}{11 \frac{м}{с}} \approx 82 000 с$. Переведем время в часы: $1 ч = 60 мин = 60 \cdot 60 c = 3600 c$. Тогда, $t = \frac{82 000 c}{3600 c} \approx 23 ч$. Ответ: $t = 82 000 c = 23 ч$.

Теги

Популярные:

Последние: