Содержание материала
Определение взаимно обратных чисел
С предыдущих уроков математики мы знаем: если прибавить или вычесть из числа нуль — оно не изменится. Точно также, если умножить или разделить число на единицу.
Ноль — нейтральный элемент для сложения и вычитания. При этом числа, которые в сумме дают ноль, называют противоположными.
- Например: 2 + (-2) = 0.
Единица — нейтральный элемент для умножения и деления. Поэтому симметричными называют числа, чье произведение дает единицу.
- Например: 3/5 * 5/3 = 1.
Два числа называют взаимно обратными, если их произведение равно 1.
Обратное число к данному числу — это такое число, которое мы умножаем на данное число и получаем единицу.

Если числа a и b взаимно обратные, то можно сказать, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Также можно говорить, что числу a обратно число b, а числу b обратно число a.
Приведем примеры взаимно обратных чисел. Так как произведение двух единиц равно 1, то по определению числа 1 и 1 — взаимно обратные.

Определение взаимно обратных чисел относится к любым числам — натуральным, целым, действительным, комплексным.
Число, обратное натуральному числу
Нахождение числа, обратного данному натуральному числу, можно свести к нахождению числа, обратного дроби. Для этого нужно записать натуральное число как дробь со знаменателем 1.
Пусть нам дано натуральное число n, и нужно записать число, обратное числу n. Так как натуральное число n равно дроби n/1, то, поменяв местами числитель и знаменатель этой дроби, получим дробь 1/n, которая и является числом, обратным натуральному числу n.
Итак, натуральному числу n обратным числом является число 1/n, то есть, дробь с числителем 1 и знаменателем n. Значит n и 1/n — взаимно обратные числа.
- Например, узнаем, какое число взаимно обратное натуральному числу 20 — дробь 1/20, а число 1/6 — обратное натуральному числу 6.
Отдельно отметим число, обратное натуральному числу 1. Число, обратное единице, это единица. Пара взаимно обратных чисел 1 и 1 уникальна тем, что составляющие ее числа равны, других таких пар взаимно обратных чисел не существует.
Видео
Правило нахождения обратного числа
- Представляем исходное число (целое или смешанное) в виде обыкновенной дроби.
- Переворачиваем полученную дробь.
Пример
Найдем число, обратное смешанной дроби 34 / 5 .
Решение:
Сперва переведем дробь в обыкновенную:
34 / 5 = 3 · 5 + 4 / 5 = 19 / 5
Меняем местами числитель и знаменатель, получаем обратное число, равное 5 / 19 .