Как найти большее основание трапеции

Трапеция (понятие, определение):

Трапеция (от др.-греч. τραπέζιον – «столик» от τράπεζα – «стол») – это выпуклый четырёхугольник, у которого две стороны параллельны, а другие две стороны не параллельны.

Трапеция – это выпуклый четырехугольник, у которого только одна пара сторон параллельна.

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, и стороны не равны между собой.

Рис. 1. Трапеция

Рис. 1. Трапеция

Выпуклым четырёхугольником называется четырёхугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

@ https://youtu.be/Q4EpXexoMrM

Видео

Средняя линия трапеции

Определение. Средняя линия — отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:
m = a + b
2

2. Формула определения длины средней линии через площадь и высоту: m  = S h

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

1. Формулы диагоналей по теореме косинусов:

d1 = √a2 + d2 — 2ad·cos β

d2 = √a2 + c2 — 2ac·cos α

2. Формулы диагоналей через четыре стороны:
d1 =  d 2 + ab —  a(d 2c2)
ab
d2 =  c2 + ab —  a(c2d 2)
ab
3. Формула длины диагоналей через высоту:

d1 = √h2 + (ah · ctg β)2 = h2 + (b + h · ctg α)2

d2 = √h2 + (ah · ctg α)2 = h2 + (b + h · ctg β)2

4. Формулы длины диагонали через сумму квадратов диагоналей: d 1 = √c 2 + d 2 + 2ab — d 22 d 2 = √c 2 + d 2 + 2ab — d 12

Формулы трапеции:

Пусть a – большее основание трапеции, b – меньшее основание трапеции, c – левая сторона трапеции, d – правая сторона трапеции, α и β углы при нижнем основании трапеции, d1 и d2 – диагонали трапеции, m средняя линия трапеции, h высота трапеции, γ и δ – углы между диагоналями трапеции, S площадь трапеции, P периметр трапеции.

Формулы для определения сторон трапеции:

Через среднюю линию и одно из оснований трапеции:

a = 2m – b

b = 2m – a

Через высоту и углы при нижнем основании трапеции:

a = b + h · (ctg α + ctg β)

b = a – h · (ctg α + ctg β)

Через боковые стороны и углы при нижнем основании:

a = b + cos α + cos β

b = a – cos α – cos β

Через высоту и углы при нижнем основании трапеции:

Формулы для определения средней линии трапеции:

Формулы для определения средней линии трапеции:

Через длины оснований трапеции:

Через площадь и высоту трапеции:

Через площадь и высоту трапеции:

Формулы для определения высоты трапеции:

Формулы для определения высоты трапеции:

Через сторону и прилегающий угол при нижнем основании трапеции:

h = sin α = sin β

Через диагонали трапеции и углы между ними:

Через диагонали трапеции, углы между ними и средню

Через диагонали трапеции, углы между ними и среднюю линию трапеции:

Через площадь и длины оснований трапеции:

Через площадь и длины оснований трапеции:

Через площадь и длину средней линии трапеции:

Через площадь и длину средней линии трапеции:

Формула для определения периметра трапеции:

Формула для определения периметра трапеции:

P = a + b + c + d

Формулы для определения площади трапеции:

Через основания и высоту трапеции:

Через среднюю линию и высоту трапеции:

Через среднюю линию и высоту трапеции:

S = m · h

Через диагонали трапеции и угол между ними:

Через все стороны трапеции:

Через все стороны трапеции:

С помощью формулы Герона для трапеции:

С помощью формулы Герона для трапеции:

Теги

Популярные:

Последние:

Adblock
detector