Импульс тела, закон сохранения импульса ⋆ СПАДИЛО

Определение и свойства импульса тела в физике

Определение 1

Импульс тела (количество движения) — это векторная (имеющая направление) физическая величина, численно равная произведению массы тела на его скорость. Векторы скорости и импульса всегда сонаправлены.

Обозначается буквой p.

Единица измерения в СИ — кг*м/с. Это означает, что импульс тела равен 1 кг*м/с при скорости 1 м/с и массе 1 кг.

Импульс тела — это характеристика движения те

Импульс тела — это характеристика движения тела, которая напрямую зависит от его массы и скорости. Чем больше масса тела или скорость, тем больше импульс, а значит, тело может оказать большее воздействие на другие тела при взаимодействии с ними.

Необходимо знать, что при взаимодействии тел их импульсы могут изменяться.

Видео

Как найти импульс тела

Формулы нахождения:

p=mV, где р, V — векторные величины.

Изменение импульса одного тела:

Δp=pк-pн, где Δp, pк (конечный импульс), pн (начальный импульс) — векторные величины.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

p=p1+p2+p3…, где p, p1, p2, p3 — векторные величины.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a. Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

Подставляем:

Или, сокращенно:

То есть, вектор – это вектор изменения импульса .

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Импульс силы

Это векторная величина, которая определяется по формуле

 Изменение импульса тела равно импульсу равнодейст

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона

Рассмотрим задачу, которая демонстрирует связь имп

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара — 30 м/с. Сила, с которой нога действовала на мяч — 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами и соответственно. Импульс системы данных тел — это векторная сумма импульсов каждого тела:

Оказывается, для импульса системы тел имеется форм.

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть — результирующая внешняя сила, действующая на тело 1. Аналогично  6 — результирующая внешняя сила, действующая на тело 2 (рис. 6).

Рис. 6. Система двух тел

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой . Тогда тело 1 действует на тело 2 с силой . По третьему закону Ньютона силы и равны по модулю и противоположны по направлению: . Силы и внутренние силы, — это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1):

 4, ( 4)

 5. ( 5)

Сложим равенства ( 4) и ( 5):

В левой части полученного равенства стоит сумма пр.

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов и . В правой части имеем в силу третьего закона Ньютона:

Но   — это импульс системы тел 1 и 2. Обозначим та.

Но — это импульс системы тел 1 и 2. Обозначим также — это результирующая внешних сил, действующих на систему. Получаем:

 6. ( 6)

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из тел, то импульс этой системы равен:

Дальше всё делается совершенно так же, как и выше .

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4) и ( 5), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6) останется справедливым и в общем случае.

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось  сумма проекций внешних сил на ось  равна нулю , сумма проекций внешних сил на ось равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось сохраняется.

Покажем это более строго. Спроектируем равенство ( 6) на ось :

Если проекция равнодействующей внешних сил обращае.

Если проекция равнодействующей внешних сил обращается в нуль, , то

Следовательно, проекция   есть константа:.

Следовательно, проекция есть константа:

Закон сохранения проекции импульса. Если проекция .

Закон сохранения проекции импульса. Если проекция на ось суммы внешних сил, действующих на систему, равна нулю, то проекция импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы , стоящий на коньках на гладком льду, бросает камень массы со скоростью под углом к горизонту. Найти скорость , с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8. Мальчик изображён прямогольником.

Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил не равна нулю во время броска. Величина больше, чем сумма , и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось . До броска эта проекция была равна нулю. Направляя ось в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим:

откуда,

откуда

Теги.

Теги

Популярные:

Последние: