Деление с остатком. Формула деления с остатком и проверка

Деление с остатком

Рассмотрим простой пример: 15:5=3 В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу: В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение: Поделим число 16 на 5 столбиком получим:


Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

16=5⋅3+1

a=bc+d a – делимое, b – делитель, c – неполное частное, d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Видео

Как найти остаток

Рассмотрим другой пример:

$$42:9=x (ост.y)$$

Давайте попробуем найти $x$ и $y$:

  1. Сначала нужно проверить, будет ли остаток равен нулю или нет. В нашем случае 42 не делится нацело на 9, значит остаток есть.
  2. Теперь подберем самое большое число, которое можно разделить нацело на делитель. При этом данное число должно быть меньше самого делимого. 36 — самое большое число, которое делится нацело на 9.
  3. Чтобы получить 36, нужно 9 умножить на 4, значит 4 и будет неполным частным $x$.
  4. Из 42 вычтем произведение делителя и неполного частного (42 — 36). В ответе получаем 6 — это как раз таки и будет остаток $y$. Пример решен!

Запомним еще 2 правила, которые необходимы при работе с остатком:

Остаток всегда меньше делителя.

Если остаток равен нулю, то говорят, что делимое делится на делитель без остатка, то есть нацело.

Проверка деления с остатком

Пока решаешь пример, бывает всякое: то в окно отвлекся, то друг позвонил. Чтобы убедиться в том, что все правильно, важно себя проверять. Особенно ученикам 5 класса, которые только начали проходить эту тему.

Формула деления с остатком

a = b * c + d,

где a — делимое, b — делитель, c — неполное частное, d — остаток.

Эту формулу можно использовать для проверки деления с остатком.

Пример

Рассмотрим выражение: 15 : 2 = 7 (остаток 1).

В этом выражении: 15 — это делимое, 2 — делитель, 7 — неполное частное, а 1 — остаток.

Чтобы убедиться в правильности ответа, нужно неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, которое равно делимому, то деление с остатком выполнено верно. Вот так:

  • 7 * 2 + 1 = 15;
  • 2 * 7 + 1 = 15.

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Самый удобный способ деления — это столбик.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Как решаем:

Выполним деление столбиком:

Неполное частное равно 271, остаток — 37.

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a=b·c+d. Связь между ними характеризуется теоремой делимости с остатком.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a=b·q+r, где q и r – это некоторые целые числа. Тут имеем ≤r≤b.

Докажем возможность существования a=b·q+r.

Доказательство

Если существуют два числа a и b, причем a делится на b  без остатка, тогда  из определения следует, что имеется число q, что будет верно равенство a=b·q. Тогда равенство можно считать верным: a=b·q+r при r=. Если посчитать, что b – целое положительное число, тогда, следует выбрать целое q так, чтобы произведение b·q не было больше значения числа а, а произведение b·(q+1) было больше, чем a.  Тогда необходимо взять q такое, чтобы данное неравенством b·q<a<b·(q+1) было верным. Необходимо вычесть b·q из всех частей выражения. Тогда придем к неравенству такого вида: <a−b·q<b. Имеем, что значение выражения a−b·q больше нуля и не больше значения числа b, отсюда следует, что  r=a−b·q. Получим, что число а можем представить в виде a=b·q+r. Теперь необходимо рассмотреть возможность представления a=b·q+r для отрицательных значений b. Модуль числа получается положительным, тогда получим a=b·q1+r, где значение q1 –некоторое целое число, r – целое число, которое подходит условию ≤r<b.  Принимаем q=−q1, получим, что a=b·q+r для отрицательных b. Доказательство единственности Допустим, что a=b·q+r, q и r являются целыми числами с верным условием ≤r<b, имеется еще одна форма записи в виде a=b·q1+r1, где q1 и r1 являются некоторыми числами, где q1≠q , ≤r1<b. Когда из левой и правых частей вычитается неравенство, тогда получаем =b·(q−q1)+r−r1, которое равносильно r-r1=b·q1-q. Так как используется модуль, получим равенство r-r1=b·q1-q. Заданное условие говорит о том, что ≤r<b и ≤r1<b запишется в виде r-r1<b. Имеем, что  q и q1– целые, причем  q≠q1, тогда q1-q≥1. Отсюда имеем, что b·q1-q≥b. Полученные неравенства r-r1<b и b·q1-q≥b указывают на то, что такое равенство  в виде r-r1=b·q1-q невозможно в данном случае. Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a=b·q+r.

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Чтобы выполнить деление с остатком  положительного числа на целое отрицательное, необходимо сформулировать правило.

Определение 1

Неполное частное от деления целого положительного a на целое отрицательное b получаем число, которое противоположно неполному частному  от деления модулей чисел a на b. Тогда остаток  равен остатку при делении a на b.

Отсюда имеем, что неполное частное от деления целого полодительного числа на целое отрицательное число  считают целым неположительным числом.

Получим алгоритм:

  • найти модули делимого и делителя;
  • делить модуль делимого на модуль делителя, тогда получим неполное частное  и
  • остаток;
  • запишем число противоположное полученному.

Рассмотрим на примере алгоритма деления целого положительного числа на целое отрицательное.

Пример 4

Выполнить деление с остатком 17 на  -5. Решение Применим алгоритм деления с остатком целого положительного числа на целое отрицательное. Необходимо разделить 17 на -5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на -5 =-3 с остатком равным 2. Ответ:17:(−5)=−3 (ост. 2).

Пример 5

Необходимо разделить 45 на -15. Решение Необходимо разделить числа по модулю. Число 45 делим на 15, получим частное 3 без остатка. Значит, число 45 делится на 15 без остатка. В ответе получаем -3, так как деление производилось по модулю. 45:(-15)=45:-15=-45:15=-3 Ответ: 45:(−15)=−3.

Деление с остатком с помощью числового луча

Деление с остатком можно выполнить и на числовом луче.

Пример 1

Рассмотрим выражение: 10 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления помещаются полностью три раза и одно деление осталось.

Решение: 10 : 3 = 3 (остаток 1).

Решение: 10 : 3 = 3 (остаток 1).

Пример 2

Рассмотрим выражение: 11 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления поместились три раза и два деления осталось.

Решение: 11 : 3 = 3 (остаток 2).

Решение: 11 : 3 = 3 (остаток 2).

Теги

Популярные:

Последние: