Давление газа на стенки сосуда

Давление твёрдого тела. Давление газа

Код ОГЭ 1.20. Давление твёрдого тела. Формула для вычисления давления твёрдого тела. Давление газа. Атмосферное давление. Гидростатическое давление внутри жидкости. Формула для вычисления давления внутри жидкости.

Силу, действующую перпендикулярно поверхности какого–либо тела, принято называть силой давления.

Скалярная физическая величина, равная отношению модуля силы давления F к площади этой поверхности S, называется давлением: .

Единица измерения давления в СИ – паскаль (Па). Да

Единица измерения давления в СИ – паскаль (Па). Давление равно 1 Па, если на поверхность тела площадью 1 м2 действует сила давления 1 Н:  Давление столба несжимаемой жидкости (гидростатиче

Давление столба несжимаемой жидкости (гидростатическое давление):

где h – высота столба жидкости, р – плотность жидк

где h – высота столба жидкости, р – плотность жидкости.

Внимание! На одном уровне гидростатическое давление одинаково во всех направлениях. Формула р = pgh определяет давление на любую площадку, помещённую на глубине h, независимо от того, как эта площадка расположена.

Внимание! Давление столба жидкости (гидростатическое давление) зависит только от плотности жидкости и высоты столба жидкости и не зависит от формы сосуда, в том числе и от площади дна сосуда.

Следовательно, оно не зависит от веса жидкости. В этом заключается гидростатический парадокс.

Земля окружена воздушной оболочкой – атмосферой, состоящей из смеси различных газов. Слои воздуха, расположенные выше, давят на нижележащие слои, оказывая таким образом давление на поверхность Земли и на все находящиеся на ней тела. Это давление называется атмосферным.

Атмосферное давление можно измерить с помощью столба жидкости.

При переворачивании трубки, наполненной жидкостью, запаянным концом вверх часть жидкости выливается, а часть остаётся внутри трубки. На уровне свободной поверхности жидкости в широком сосуде (см. рисунок) давление столба жидкости высотой h уравновешивает атмосферное давление: ра = pgh.

Первые опыты по измерению атмосферного давления проведены Э. Торричелли. В качестве жидкости использовалась ртуть.

Внимание! Атмосферное давление, уравновешиваемое при 0°С столбом ртути высотой 760 мм, считается нормальным и называется физической атмосферой (атм). Давление, производимое столбом ртути высотой 1 мм, называется миллиметром ртутного столба (мм рт. ст.):

  • 1 атм = 760 мм рт. ст. = 101325 Па ~ 105 Па;
  • 1 мм рт. ст. ~ 133,3 Па.

Приборы для измерения атмосферного давления называются барометрами. Приборы, измеряющие разницу между давлением газа в сосуде и атмосферным давлением, называются манометрами.

Конспект урока «Давление твёрдого тела. Давление газа».

Следующая тема: «Закон Паскаля. Гидравлический пресс».

Главные формулы

При изменении условия агрегатного состояния вещества наблюдаются отличные друг от друга свойства. С учётом этого принципа определяется способ вычисления Р. Для гидростатического состояния используется формула: Р = pgh, где:

  • р — плотность;
  • g — ускорение;
  • h — высота.

Гидростатика применяется к газам. Исключение — вычисление АД. Это объясняется разностью высот и плотностей воздушных масс. От глубины погружения предмета либо объекта зависит значение Р вещества. Так как сила F вычисляется путём умножения m на g, а масса воды — p на V, идеальным вариантом для расчёта давления считается выражение: P = pVg / S. Формула применяется на онлайн-ресурсах, где можно решать задачи по физике и химии.

Если площадь записать в виде S= V/h, тогда Р= pgh. Давление в воде либо иной жидкости вычисляется с учётом изменения верхнего слоя. Это приводит к образованию другого Р. Чтобы найти абсолютную силу, используется формула:

Р = Р0 + 2QH, где:

  • Р0 — давление неизменяемого слоя;
  • Q — поверхность натяжения жидкого вещества;
  • H — среднее значение.

Последний показатель должен сообщаться между первыми двумя, поэтому он считается усреднённым. Для определения значения используются радиусы кривизны: ½ (1/R1+ 1/R2). Каждый вид газа оказывает особенное парциальное давление. Для идеального состояния характерна сумма Р каждого отдельного компонента смеси. Частая ошибка, которую допускают школьники при вычислении давления воздуха — применение только кислорода. Но воздух представлен в виде различных газов:

  • аргон;
  • азот.

Для нахождения давления воздушных масс используется формула P=P1+P2+P3…

Видео

Причина возникновения давления в газах

Давление газа нельзя объяснить теми же причинами, что и давление твердого тела на опору. Расстояние, на которое удалены молекулы газообразной среды, существенно больше. В результате хаотичного движения они сталкиваются между собой и со стенками сосуда, который они занимают. Давление газа на стенки сосуда и вызвано ударами его молекул.

Данный параметр увеличивается по мере того, как нарастает сила ударов молекул о стенки. Газ характеризуется одинаковым давлением во всех направлениях, которое является следствием хаотичного движения огромного числа молекул.

Примечание

Важно отметить, что газ оказывает давление на дно и стенки сосуда, объем которого он занимает, во всех направления равномерно. В связи с этим, воздушный шарик сохраняет форму, несмотря на то, что его оболочка достаточно эластична.

Перед тем как транспортировать или отправить на хранение газообразные вещества, их сильно сжимают. В этом случае давление газа увеличивается. Его помещают в специальные баллоны из стали высокой прочности. Такие емкости необходимы для хранения сжатого воздуха на подводных лодках и кислорода, предназначенного для сварки металлов.

Свойства давления газа:

  1. Если объем уменьшается, то давление газа возрастает, а во время увеличения объема, давление будет снижаться при постоянных величинах массы и температуры вещества.
  2. Газ, находящийся в закрытом сосуде, характеризуется давлением, которое возрастает по мере увеличения температуры вещества при условии постоянства его массы и объема.
  3. В том случае, когда масса газа увеличивается, его давление также будет возрастать и наоборот.

Запись формул для определения давления газа начинают с выяснения причин, по которым оно возникает в рассматриваемой системе. Исходя из физического смысла, давление представляет собой величину, равную отношению силы, перпендикулярно воздействующей на некоторое основание, к площади этого основания:

\(P=\frac{F}{S}\)

Как было отмечено ранее, для идеальной газовой системы характерен лишь один тип взаимодействия — это абсолютно упругие столкновения. В процессе частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. В данном случае применим второй закон Ньютона:

\(F*Δt = Δp\)

Таким образом, конкретно сила F является причиной формирования давления на стенки сосуда. Данная величина F, производимая одной частицей, незначительна. Однако, когда количество частиц огромно, они в совокупности создают ощутимый эффект, проявляемый в виде наличия давления в сосуде.

Формула давления из уравнения состояния

В середине 30-х годов XIX века французский инженер

В середине 30-х годов XIX века французский инженер Эмиль Клапейрон, обобщая накопленный до него экспериментальный опыт по изучению поведения газов во время разных изопроцессов, получил уравнение, которое в настоящее время называется универсальным уравнением состояния идеального газа. Соответствующая формула имеет вид:

P*V = n*R*T

Здесь n – количество вещества в молях, T – температура по абсолютной шкале (в кельвинах). Величина R называется универсальной газовой постоянной, которая была введена в это уравнение русским химиком Д. И. Менделеевым, поэтому записанное выражение также называют законом Клапейрона-Менделеева.

Из уравнения выше легко получить формулу давления газа:

P = n*R*T/V

Равенство говорит о том, что давление линейно возрастает с температурой при постоянном объеме и увеличивается по гиперболе с уменьшением объема при постоянной температуре. Эти зависимости отражены в законах Гей-Люссака и Бойля-Мариотта.

Если сравнить это выражение с записанной выше форм

Если сравнить это выражение с записанной выше формулой, которая следует из положений МКТ, то можно установить связь между кинетической энергией одной частицы или всей системы и абсолютной температурой.

Пример использования калькулятора

Представим баллон газа объемом 15 л под давлением 120 кПа и при температуре –20 градусов Цельсия. Определим температуру газа, если баллон будет заменен на емкость объемом 10 л и давлением 150 кПа. На первый взгляд у нас есть все параметры, однако в газовых законах температура обязательно указывается в кельвинах, а не градусах. Для перевода температуры в систему Си достаточно прибавить к значению величину 273. Получаем, что температура газа составляет 253 К. Теперь вводим данные в соответствующие ячейки и смотрим на результат: конечная температура теперь равна 210 К или –63 градуса Цельсия. Очевидно, что газ подчинился приведенным выше законам и при уменьшении объема его температура также уменьшилась.

Вычисление давления идеального газа

Выделим на стенке сосуда маленькую площадку При соударении молекула, которая движется по норма, определим каково давление, которое газ оказывает на нее.

При соударении молекула, которая движется по нормали к площадке, передает ей импульс равный:

где  – масса молекулы, v – скорость мо

где – масса молекулы, v – скорость молекулы. За время равное выделенной площадки достигают только те молекулы, которые находятся в объеме цилиндра основание которого равно , а высота: . Количество таких молекул равно , где n – число молекул в единице объема газа. На самом деле молекулы движутся к выделенной площади под разными углами и имеют разные скорости, и скорость молекулы при каждом соударении со стенкой изменяется. Тогда принимая во внимание пункт 3 сделанных нами допусков имеем, что число ударов молекул о площадку будет равно: . Импульс, который получает стенка при ударах этого числа молекул, равен:

В таком случае давление газа на стенку получается

В таком случае давление газа на стенку получается равно:

Определим среднеквадратичную скорость (), которая

Определим среднеквадратичную скорость (), которая характеризует всю совокупность молекул газа, как:

где N – число молекул в объема газа равном V

где N – число молекул в объема газа равном V. Тогда давление идеального газа равно:

Уравнение (5) называют основным уравнением МКТ. Пр

Уравнение (5) называют основным уравнением МКТ. Приведенный вывод формулы (5) является очень приблизительным, но точный расчет давления с учетом движения молекул по всем направлениям даст такую же формулу.

Основное уравнение МКТ часто записывают в виде:

где  – средняя кинетическая энергия поступат

где Давление идеального газа можно вычислить, применяя – средняя кинетическая энергия поступательного перемещения молекул газа.

Давление идеального газа можно вычислить, применяя уравнения состояния:

где T – температура газа по абсолютной шкале

где T – температура газа по абсолютной шкале температур (в К).

или уравнение состояния, называемое уравнением Менделеева — Клапейрона

где  – молярная масса газа; R- универсальная

где 
– молярная масса газа; R- универсальная газовая постоянная.

Формулы давления газа (идеального)

В 1834 году в результате анализа экспериментальных данных относительно поведения газовых систем при различных условиях (законы Бойля-Мариотта, Гей-Люссака, Шарля, принцип Авогадро) французский инженер и ученый Эмиль Клапейрон вывел универсальное уравнение идеального газа. Впоследствии оно было несколько модифицировано русским химиком Менделеевым. В настоящее время его записывают так:

P * V = n * R * T.

Здесь n, T и V — количество вещества, абсолютная температура и объем газа. Постоянная R равна 8,314 Дж/(К*моль).

Это уравнение позволяет записать формулу абсолютного давления газа в следующем виде:

P = n * R * T / V.

Из этой формулы следует, что если происходит изотермический процесс в закрытой системе, то давление будет меняться обратно пропорционально величине V (закон Бойля-Мариотта). Если же объем в закрытой системе зафиксировать, то P будет линейно расти с увеличением абсолютной температуры (закон Гей-Люссака).

Помимо записанного выражения, можно привести еще одну формулу давления газа, объем которого изменяется. Эта формула следует из молекулярно-кинетической теории. Запишем ее:

P = N * m * v2 / (3 * V).

Где N, m — число частиц и масса одной частицы, v2 — квадрат средней скорости.

Обе формулы легко переводятся друг в друга, если использовать следующее выражение связи кинетической энергии частицы и абсолютной температуры:

m * v2 / 2 = 3 / 2 *kB * T.

Здесь постоянная Больцмана обозначена kB.

Давление в газовой смеси

Отвечая на вопрос о том, как найти давление газа и формулы, мы ничего не говорили о том, является ли газ чистым, или речь идет о газовой смеси. В случае формулы для P, которая следует из уравнения Клапейрона, нет никакой связи с химическим составом газа, в случае же выражения для P из МКТ эта связь присутствует (параметр m). Поэтому при использовании последней формулы для смеси газов становится непонятным, какую массу частиц выбирать.

Когда необходимо рассчитать давление смеси идеальных газов, следует поступать одним из двух способов:

  • Рассчитывать среднюю массу частиц m или, что предпочтительнее, среднее значение молярной массы M, исходя из атомных процентов каждого газа в смеси;
  • Воспользоваться законом Дальтона. Он гласит, что давление в системе равно сумме парциальных давлений всех ее компонентов.

Уравнения МКТ, содержащие давление идеального газа

Уравнение Менделеева — Клапейрона (еще один вариант уравнения состояния):

где $\frac{m}{\mu }=\nu $ -количество вещества; $m$ — масса газа; $\mu $- молярная масса газа; $R$ — универсальная газовая постоянная.\textit{}

Определение работы газа в термодинамике:

Соответственно, первое начало термодинамики для идеального газа в дифференциальном виде запишем как:

где $i$ — число степеней свободы молекулы газа; $\delta Q$ — элементарное количество теплоты, которое получает идеальный газ; $\frac{i}{2}\nu RdT=dU$ — изменение внутренней энергии термодинамической системы.\textit{}

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает: давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление p = F/S

p — давление [Па] F — сила [Н] S — площадь [м^2]

То есть, если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы они толкали грузовой автомобиль (просто потому что легковая меньше грузовика).

Из формулы давления следует, что давление на легковой автомобиль будет больше из-за меньшей площади.

Давайте рассмотрим аналогичный пример с двумя сосудами разной площади.

Давление в левом сосуде будет больше, чем во втором, по аналогичной схеме — потому что площадь меньше. Но если площадь основания меньше, то и объем меньше. Это значит, что давление будет зависеть от объема следующим образом: чем больше объем, тем меньше давление — и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):

Такая зависимость называется законом Бойля-Мариотта.

Она экспериментально проверяется с помощью такой установки.

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в Жаком Шарлем.

Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке.

Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру, а соответствующее давление — по манометру.

Этот эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейно:

Эта зависимость называется законом Шарля.

Измерительные приборы

Можно сэкономить время на расчётах, воспользовавшись специальными приборами, функционирующими путём определения давления в соответствующей среде, что схоже с манометром. Их отличия между собой заключаются в инструкции по эксплуатации, сфере использования, точности, области применения.

Чтобы определить АД, понадобится манометр типа барометра. Для определения разряжения (Па меньше атмосферного) понадобится иная разновидность аппарата — вакуумметр. У человека показатель определяется с помощью сфигмоманометра. Большинство пациентов называют такое оборудование неинвазивным тонометром.

Подобные приборы классифицируются на следующие подвиды:

  • ртутные механические;
  • полуавтоматические;
  • автоматические цифровые.

Их погрешность зависит от материалов, используемых в процессе производства и области измерения. Некоторые устройства одновременно измеряют давление и пульс. Они работают автоматически от батареек. За счёт наличия цифрового табло легко узнать результат. Более точными считаются механические.

Чтобы определить Р, понадобится надеть манжет на правую руку больного. Зажав механизм, производится накачка груши. Максимальный и минимальный пределы начинаются с появления, а затем с исчезновения характерного стука. Постепенно механизм ослабляется. Для получения точных данных потребуется опыт работы с механическим тонометром и внимательность. Если наблюдаются колебания давления в воздухе, понадобится дифнамометр либо манометр.

Теги

Популярные:

Последние: