Содержание материала
- Калькулятор расчёта диагонали прямоугольного параллелепипеда зная длину его рёбер, онлайн
- Видео
- Теорема Пифагора
- Прямоугольный параллелепипед
- Объем и площадь поверхности
- Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда
- Косоугольная фигура
- Диагонали прямоугольного параллелепипеда: теорема
- Что мы узнали?
Калькулятор расчёта диагонали прямоугольного параллелепипеда зная длину его рёбер, онлайн
Длина ребра параллелепипеда (a) | |
Длина ребра параллелепипеда (b) | |
Длина ребра параллелепипеда (c) |
Видео
Теорема Пифагора
Теорема справедлива для любого треугольника с прямым углом. Данные исторических архивов свидетельствуют, что греческий философ Пифагор впервые доказал, что при складывании квадратов катетов всегда получается квадрат гипотенузы, то есть стороны, которая лежит против прямого угла.
Теорема Пифагора — полезный геометрический инструмент при расчетах параметров не только треугольников, но и прямоугольников. Если 2 противоположные (несмежные) вершины четырехугольника соединить, получится отрезок, который называется диагональю. Она делит фигуру ровно на 2 половинки, каждая представляет собой треугольник с углом 90 градусов, если исходный четырехугольник является прямоугольным.
Исходя из геометрических построений можно понять, что прямоугольник имеет 2 одинаковые диагонали. Если предположить, что стороны фигуры равны a и b, диагональ c легко рассчитывается по теореме Пифагора: c = (a 2 + b 2 )^0,5.
В случае квадрата получается еще более простая формула: c = a*(2)^0,5.
Прямоугольный параллелепипед
Определение прямоугольного параллелепипеда:
Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.
Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.
Объем и площадь поверхности
Полученная формула для диагонали не является исключительно теоретической. Ее можно применять для расчета важных для практики величин, например, объема фигуры и площади ее поверхности.
Объем V и площадь поверхности S вычисляются по таким формулам:
- V = a*b*h;
- S = 2*(a*b + a*h + b*h).
V и S однозначно определяются, если знать 3 линейных параметра фигуры. Одним из них может являться длина объемной диагонали, которая зависит от тех же величин, что V и S.
При решении задач, в которых необходимо найти какой-либо объемный параметр или характеристику площади через известные диагонали, потребуется выполнять вычисления с квадратными и кубическими уравнениями.
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда
ОпределениеОбъем прямоугольного параллелепипеда равен длине, умноженной на ширину и высоту.
\(V=a\cdot b\cdot h,\)
где V — объем, a — длина, b — ширина, h — высота.
ПримечаниеПлощадь боковой поверхности равна сумме площадей боковых граней.
\(S_{бп}=2(ab+ac)\)
ПримечаниеПлощадь полной поверхности равна сумме площадей боковых граней и оснований.
\(S_{пп}=2(ab+bc+ac)\)
Косоугольная фигура
Параллелепипед бывает не только прямоугольным, но и наклонным или косоугольным. Основной его отличительной чертой является, что боковое ребро наклонено к плоскости прямоугольного основания под некоторым углом, который отличается от 90 градусов. В таком случае высота фигуры оказывается меньше длины этого ребра.
Наклонный параллелепипед также имеет 4 диагонали в объеме, однако они не всегда имеют одинаковую длину. В этом случае не существует какой-либо конкретной формулы для расчета длины. Для решения подобных сложных задач можно воспользоваться двумя методами:
Диагонали прямоугольного параллелепипеда: теорема
Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.
Если есть теорема, нужно ее доказать. (с) Пифагор
Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Доказательство теоремы:
Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.
Применяем формулу:
d² = a² + b² + c²
Все грани прямоугольного параллелепипеда — прямоугольники.
ΔABD: ∠BAD = 90°, по теореме Пифагора
d₁² = a² + b²
ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора
d² = d₁² + c² = a² + b² + c²
d² = a² + b² + c²
Доказанная теорема — пространственная теорема Пифагора.
Что мы узнали?
Мы поговорили о диагоналях прямоугольного параллелепипеда. Узнали, что, используя свойства диагоналей параллелепипеда, можно найти ширину, длину и высоту параллелепипеда. Поговорили о том, как найти центр симметрии, и определить длину диагоналей прямоугольного параллелепипеда.