Что такое двугранный угол? Как найти двугранный угол?

Двугранный угол коротко о главном

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.

Двугранный угол может быть и острым и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

  • Двугранный угол измеряется величиной своего линейного угла.
  • Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.

Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90{}^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90{}^\circ \).

Два способа найти угол между плоскостями:

  • При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

\( \displaystyle \cos \gamma =\frac{{{A}_{1}}{{A}_{2}}+{{B}_{1}}{{B}_{2}}+{{C}_{1}}{{C}_{2}}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}\sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}\)

Видео

Перпендикулярность плоскостей

В частном случае, когда угол составляет 90°, говорят, что пересекающиеся плоскости перпендикулярны.

Перпендикулярны друг другу пол и стены в доме, сме

Перпендикулярны друг другу пол и стены в доме, смежные грани кубика, стенки коробки. Существует особый признак перпендикулярности плоскостей.

Действительно, пусть плоскости α и β пересекаются

Действительно, пусть плоскости α и β пересекаются по линии n, и в β есть такая прямая m, что m⊥α. Тогда m и n должны пересекаться в какой-нибудь точке К. Проведем в плоскости α через К прямую р, перпендикулярную n. Ясно, что m⊥р, ведь m⊥α. Получается, угол между m и р как раз и является углом между плоскостями α и β, ведь m⊥n и р⊥n. И этот угол равен 90°, ведь m⊥p, ч т. д.

Из доказанного признака вытекает следующее утверждение:

Линейный угол двугранного угла

Как измерить двугранный угол?

Нужно поступить так: из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.

Смотри:

В плоскости \( \displaystyle \alpha \) провели перпендикуляр \( \displaystyle MD\) к ребру \( \displaystyle AB\). Что получилось? Обычный, плоский угол \( \displaystyle \varphi \).

Вот этот угол и называется: линейный угол двугранного угла \( \displaystyle AB\).

Зачем этот линейный угол? Запомни, это очень ВАЖНО:

Двугранный угол измеряется величиной своего линейного угла.

То есть математически договорились, что если угол φ будет равен, к примеру \( \displaystyle 20{}^\circ \), то это будет автоматически означать, что угол \( \displaystyle AB\) равен \( \displaystyle 20{}^\circ \).

Вот и ключ к поиску величины двугранного угла и угла между плоскостями:

Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.

Ещё раз немного о названиях.

Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90{}^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90{}^\circ \).

Типичные задачи на углы между плоскостями

В школьной практике почти не встречаются задачи с многогранными углами, поэтому достаточно понимания и двугранного угла.

Задание. У тетраэдра ABCD все ребра одинаковы. Найдите величину двугранного угла между плоскостями АВС и АСD.

Решение. Отметим на ребре АС точку М, которая является его серединой:

Заметим, что плоскости АВС и АСD пересекаются по п

Заметим, что плоскости АВС и АСD пересекаются по прямой АС. Раз все ребра тетраэдра одинаковы, то ∆АВС и ∆АСD – равносторонние. DM и BM – это медианы в ∆АВС и ∆АСD соответственно, ведь M – середина АС. Но раз треугольники равносторонние, то они одновременно являются и высотами, то есть BM⊥AC и DM⊥АС. Тогда ∠DMB как раз и представляет собой линейный угол двугранного угла BАСD. То есть именно его значение нам и надо вычислить (если, конечно, он окажется не больше 90°).

Пусть ребра тетраэдра имеют длину а. Тогда АМ вдвое короче. Найдем из прямоугольного ∆АМD длину MD:

Задание. Двугранный угол равен φ, меньший 90°. На

Задание. Двугранный угол равен φ, меньший 90°. На одной из его граней отмечена точка К, которая находится на расстоянии d от другой грани. Каково расстояние между точкой К и ребром двугранного угла?

Решение. Пусть угол образован плоскостями α и β. Опустим из K два перпендикуляра – один на плоскость β в точку Н, а другой на линию пересечения плоскостей в точку Р:

По условию задачи ∠НРК = φ, а HK = d. Нам же надо

По условию задачи ∠НРК = φ, а HK = d. Нам же надо найти РК. Это можно сделать, применив определение синуса к ∆РНК:

Задание. Верно ли, что плоскость, пересекающая две

Задание. Верно ли, что плоскость, пересекающая две параллельные плоскости, образует с ними одинаковые углы?

Решение. Пусть есть параллельные друг другу плоскости α и β, а пересекает их плоскость γ. Линию пересечения α и γ обозначим как n, и такую же линию для β и γ обозначим как m:

Заметим, что m и n располагаются в одной плоскости

Заметим, что m и n располагаются в одной плоскости γ и при этом не пересекаются, в противном случае у α и β нашлась бы общая точка, которой быть не должно. Значит, m||n.

Далее проведем в γ прямую р, перпендикулярную n. Раз m||n и р⊥n, то и р⊥m. То есть р – общий перпендикуляр для m и n.

Далее в α через точку пересечения n и p проведем прямую k, перпендикулярную n. Ясно, что k||β. После уже через точку пересечения m и p построим такую прямую k’, что k||k’:

Так как k||β и k||k’, то прямая k’ будет принадлеж

Так как k||β и k||k’, то прямая k’ будет принадлежать плоскости β (по теореме 6 из этого урока). Так как k||k’, m||n и n⊥k, то по теореме о сонаправленных лучах можно утверждать, что и m⊥k’. Тогда углы, отмеченные на рисунке синим цветом – это и есть линейные углы двугранных углов. Они одинаковы, так как являются соответственными при секущей р и параллельных прямых k и k’. Если же двугранные углы равны, то одинаковы и углы между плоскостями, ч. т. д.

Примечание. Доказанный факт можно сформулировать в виде теоремы:

Она может быть использована при решении некоторых

Она может быть использована при решении некоторых сложных задач.

Задание. В прямоугольном ∆АВС АВ и АС – катеты с длиной 7 и 24 соответственно. Через гипотенузу проведена плоскость β, образующая с плоскостью АВС угол 30°. Каково расстояние между точкой А и плоскостью β?

Решение.

Опустим из А перпендикуляр АН на β. Это и будет ис

Опустим из А перпендикуляр АН на β. Это и будет искомое нами расстояние. Также в ∆АВС построим высоту AD. Заметим, что раз АН⊥β, то по определению и АН⊥HD. Можно сказать, что HD – это проекция AD на β. Раз прямая ВС перпендикулярна наклонной AD, то она одновременно будет перпендикулярна и наклонной HD по обратной теореме о трех перпендикулярах.

Плоскости АВС и β пересекаются по прямой ВС, АD⊥ВС и HD⊥BC. Получается, что ADH – это как раз угол между АВС и β, и по условию он составляет 30°.

По теореме Пифагора вычислим гипотенузу ВС:

Теперь перейдем к ∆AHD. Он также прямоугольный (∠Н

Теперь перейдем к ∆AHD. Он также прямоугольный (∠Н = 90°). Используем для него тригонометрию:

Задание. Известны измерения прямоугольного паралле

Задание. Известны измерения прямоугольного параллелепипеда. Его длина составляет 90 см, ширина – 20 см, а высота – 60 см. Какова длина диагонали такого параллелепипеда?

Решение. Обозначим измерения буквами а, b, с, а диагональ буквой d. Достаточно просто воспользоваться формулой:

Далее рассмотрим несколько задач, в которых надо н

Далее рассмотрим несколько задач, в которых надо найти угол между плоскостями, находящимися в кубе с ребром, чья длина составляет единицу.

Задание. Вычислите угол между гранью ADHЕ и сечением АBGН:

Решение. Заметим, что сечение АВGH содержит прямую

Решение. Заметим, что сечение АВGH содержит прямую АВ. Но АВ – это перпендикуляр к АЕНD. Если АВGH содержит перпендикуляр к ADH, то эти две плоскости перпендикулярны, и угол между ними составляет 90°.

Ответ: 90°.

Задание. Определите угол между гранью ADHE и сечением ADGF:

Решение. Две рассматриваемые плоскости пересекаютс

Решение. Две рассматриваемые плоскости пересекаются по ребру AD. Ребра DH и AD перпендикулярны как стороны квадрата. Так как AD – это перпендикуляр к грани СDHG, то AD⊥DG. Получается, что ∠HDG – это и есть искомый угол. Его величина равна 45°, ведь это угол между диагональю квадрата и его стороной.

Ответ: 45°.

Задание. Вычислите угол между сечениями АВGH и EFCD:

Решение. Пересекаются эти две плоскости по прямой

Решение. Пересекаются эти две плоскости по прямой KP, где K и P – точки пересечения диагоналей квадратов BFGH и AEHD. Докажем, что отрезки KG и KC перпендикулярны KP.

Действительно, рассмотрим четырехугольник АВGH. Ребра АВ и GH перпендикулярны граням AEHD и BFGH, поэтому все углы в АВGH – прямые, то есть это прямоугольник и BG||AH. Теперь рассмотрим четырехугольник АВKP. Стороны BK и AP параллельны и равны как половины равных отрезков BG и AH. Значит, BKAP – параллелограмм. Но в нем есть прямые углы ∠В и ∠А, поэтому BKAP – прямоугольник. Аналогично можно показать, что и KGHP – прямоугольник. Это и приводит к выводу о том, что KG⊥KP и PH⊥KP. Поэтому ∠СKG и является искомым углом между сечениями. Он является углом между диагоналями квадрата, то есть равен 90°.

Ответ: 90°.

Задание. Найдите угол между сечением AFH и гранью AEHD:

Решение. Обозначим середину диагонали AH буквой K.

Решение. Обозначим середину диагонали AH буквой K. Докажем ∠EKF – искомый нами угол:

Действительно, плоскости AHD и AFH пересекаются по

Действительно, плоскости AHD и AFH пересекаются по прямой AH. EK – медиана в равнобедренном ∆AEH с основанием AH, поэтому она также является и высотой, то есть EK⊥AH. AF и FH – диагонали в равных квадратах ABFE и EFGH, поэтому эти диагонали одинаковы. Значит, ∆AFH – равнобедренный, и поэтому его медиана FK также перпендикулярна основанию AH. Получается, что ∠EKF и является искомым. Вычислить его можно из ∆EKF.

Сначала найдем длину EK. В прямоугольном ∆AEK ∠KAE составляет 45° (угол между диагональю и стороной квадрата), поэтому

Задание. Вычислите угол между гранью BCGF и сечени

Задание. Вычислите угол между гранью BCGF и сечением AFH:

Решение. Вспомним, что в предыдущей задаче мы уже

Решение. Вспомним, что в предыдущей задаче мы уже вычислили угол между гранью АЕHD и тем же сечением АFH. Но грани AEHD и BCFG параллельны, поэтому АFH должна пересекаться их под одним и тем же углом. Поэтому ответ этой задачи совпадает с ответом к предыдущей задаче.

Ответ: ≈ 54,74°.

Задание. Чему равен угол между сечениями АСH и AFGH?

Решение. Пусть диагонали СН и DG пересекаются в то

Решение. Пусть диагонали СН и DG пересекаются в точке К. Точка K будет принадлежать обоим сечениям, как и точка А. Значит, сечения пересекаются по линии АК. Проведем в сечении AFGH через точку K прямую, перпендикулярны АК и пересекающую FG в какой-то точке Р (позже мы убедимся, что прямая действительно должна пересекать отрезок FG):

Докажем, что ∠CPK и является углом между сечениями

Докажем, что ∠CPK и является углом между сечениями. Мы специально провели РК так, что РК⊥АК. Теперь посмотрим на ∆АСН. Он равносторонний, ведь его стороны АС, СН и DH – это диагонали равных квадратов (граней куба). Прямая АК – медиана, ведь K – точка пересечения диагоналей квадрата СDHG, которая делит диагонали пополам. Но раз ∆АСН равносторонний, то его медиана – это ещё и высота, то есть АК⊥РК. Итак, АК⊥СК и АК⊥РК, поэтому ∠CPK – это угол между сечениями. Для его вычисления необходимо найти все стороны в ∆РСК и далее применить теорему косинусов.

Проще всего найти СК. ∆СKD – прямоугольный (∠К = 90°), а ∠СDK составляет 45° (угол между стороной и диагональю в квадрате). Тогда можно записать, что

Отдельно отметим, что отрезки GK и KD имеют такую

Отдельно отметим, что отрезки GK и KD имеют такую же длину, ведь диагонали в квадрате (а значит и их половины) одинаковы.

Для нахождения РК покажем отдельно плоскость AFG, то есть красное сечение:

Обозначим ∠KAD как φ. Тогда ∠АКD будет составлять

Обозначим ∠KAD как φ. Тогда ∠АКD будет составлять 90 – φ. Углы ∠АКD, ∠АKP и ∠PKG в сумме дают 180°, что позволяет найти ∠PKG:

Получилось, что у ∆АКD и ∆PKG есть по два одинаков

Получилось, что у ∆АКD и ∆PKG есть по два одинаковых угла (φ и 90°). Значит, они подобны. Составим такую пропорцию:

Теперь можно вернуться ко всему кубу и найти отрез

Теперь можно вернуться ко всему кубу и найти отрезок РС. Здесь снова можно применить теорему Пифагора, но уже к ∆PCG:

Теперь для ∆PCK мы можем записать теорему косинусо

Теперь для ∆PCK мы можем записать теорему косинусов

Неожиданно мы доказали, что два построенных сечени

Неожиданно мы доказали, что два построенных сечения перпендикулярны друг другу. Прийти к этому выводу можно было и иначе. Достаточно было бы показать, что прямая CH – это перпендикуляр к сечению AFGD. Попробуйте сделать это самостоятельно.

Ответ: 90°.

Задание. Вычислите угол между сечениями BDHF и ADGF:

Решение. У сечений общими являются точки F и D. Зн

Решение. У сечений общими являются точки F и D. Значит, именно по прямой FD они пересекаются.

Опустим в синей сечении BDHF перпендикуляр на FD, который упадет в некоторую точку K:

Докажем, что отрезок GK также перпендикулярен FD.

Докажем, что отрезок GK также перпендикулярен FD. Действительно, BK – это высота в ∆BDF. Но ∆BDF и ∆GDF равны, ведь они одинаковы все три стороны (FD – общая сторона, BF и FG – ребра куба, BD и DG – диагонали на гранях куба). В равных треугольниках высоты должны делить стороны на равные отрезки, поэтому высота, опущенная из G на FD, также разделит FD на отрезки FK и KD. То есть она просто упадет в точку K. Это и значит, что KG – высота. Получается, что нам надо вычислить ∠BKG.

Сначала найдем длину диагоналей BD и BG. Можно применить теорему Пифагора для ∆BFG:

KG имеет ту же длину, ведь KG и BK – одинаковые вы

KG имеет ту же длину, ведь KG и BK – одинаковые высоты в равных треугольниках ∆BDF и ∆GDF.

Теперь используем теорему косинусов для ∆BKG:

Мы вычислили двугранный угол, но он оказался больш

Мы вычислили двугранный угол, но он оказался больше 90°. Это значит, угол между плоскостями равен не 120°, а 180° – 120°, то есть 60°.

Ответ: 60°.

Сегодня мы познакомились с понятием двугранного угла, научились вычислять углы между плоскостями. В частном случае вместо вычисления угла можно просто доказать перпендикулярность плоскостей.

Теги

Популярные:

Последние:

Adblock
detector