Содержание материала
Варианты определения высоты
Если вам известно, чему равна сторона ромба (обозначается буквой а) и его площадь (S), вычислить высоту можно по простой формуле: h=S:a. Основная формула служит для определения площади: S=a*h.
Если для определения высоты по указанной выше формуле у вас не достает данных, вы можете воспользоваться некоторыми другими. Найдя с их помощью нужные значения, вы сможете подставить их в ту, по которой можно определить высоту.
Если вам известна длина диагоналей, вы легко найдете площадь. S=(d1*d2)/2.
Зная периметр ромба, можно найти длину его стороны: P=4a.
Еще одна формула для определения площади. S=a*a*sin (a).

Расшифровка:
- S — площадь ромба;
- a — длина стороны ромба;
- d1 — длина одной диагонали;
- d2 — длина второй диагонали;
- h — высота;
- Р — периметр;
- sin (a) — синус угла а.
Важно: существуют еще более сложные формулы, которые помогут определить дополнительные параметры. Как правило, в школьных задачах никто не предоставляет данные, по которым легко определить высоту ромба. Чтобы дать правильный ответ на поставленный вопрос, требуется применение нескольких формул. Совет: нарисуйте небольшую шпаргалку (ромб с обозначение сторон + формулы).

Можете также узнать косинус 210° градусов или sin(0°).
Видео
Диагонали ромба
Определение. Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.Ромб имеет две диагонали — длинную d1, и короткую — d2Формулы определения длины диагонали ромба:
1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)d1 = a√2 + 2 · cosα
d1 = a√2 — 2 · cosβ
2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)d2 = a√2 + 2 · cosβ
d2 = a√2 — 2 · cosα
3. Формулы большой диагонали ромба через сторону и половинный угол:d1 = 2a · cos(α/2)
d1 = 2a · sin(β/2)
4. Формулы малой диагонали ромба через сторону и половинный угол:d2 = 2a · sin(α/2)
d2 = 2a · cos(β/2)
5. Формулы диагоналей ромба через сторону и другую диагональ:d1 = √4a2 — d22
d2 = √4a2 — d12
6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:d1 = d2 · tg(β/2)
d2 = d1 · tg(α/2)
7. Формулы диагоналей через площадь и другую диагональ:d1 = | 2S |
d2 |
d2 = | 2S |
d1 |
8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности: d 1 = 2r sin (α /2) d 2 = 2r sin (β /2)
Как найти высоту ромба, если известна площадь и периметр (какая формула)?

Ознакомьтесь со всеми формулами расчета площади ромба:
Чтобы узнать высоту, нам нужна самая первая формула (Площадь = Высота умножить на Длину стороны).
Допустим, что периметр равен 124 см, а площадь — 155 см кв.
Нам играет на руку то, что у ромба все стороны одинаковые, потому его периметр — это 4 умножить на длину одного катета.
- Найдем длину стороны ромба через известный периметр. Для этого значение периметра (124) делим на 4, и получаем значение 31 сантиметр — длина катета.
- Подсчитываем высоту через формулу площади. Делим площадь (155 см кв.) на размер катета (31 см) и получаем 5 сантиметров — это размер высоты данной геометрической фигуры.
Основные свойства ромба
1. Имеет все свойства параллелограмма 2. Диагонали перпендикулярны:AC┴BD
3. Диагонали являются биссектрисами его углов:∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба. 6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.
Нахождение высоты ромба через вписанную окружность
Вне зависимости от длины сторон и величины углов ромба в него можно вписать окружность. Центр данной геометрической фигуры будет совпадать с точкой пересечения диагоналей равностороннего параллелограмма. Информация о величине радиуса такой окружности поможет определить высоту ромба, т.к. r = H/2, где:
- r – радиус вписанного в ромб круга,
- H – искомая высота фигуры.
Из данного соотношения следует, что высота равнобокого параллелограмма соответствует удвоенному радиусу вписанного в этот параллелограмм круга – H = 2r .
Как посчитать высоту ромба, если известна сторона и диагональ?
В этой задаче нужно использовать прямоугольный треугольник, который образован пересечением диагоналей.
Допустим, что сторона равна 10 см, а диагональ — 12 см.
Наши действия:
Находим размер половины второй диагонали при помощи теоремы Пифагора. Гипотенуза в нашем случае — это сторона, потому величина половины диагонали будет равна разнице квадрата катета (10 в квадрате) и квадрата половины известной диагонали (6 в квадрате). Выходит, что нужно от 100 отнять 36 — имеем 64 сантиметра. Добываем корень из этого числа и получаем длину половины второй диагонали — 8 см. А полная длина равна 16 сантиметрам.
Подсчитываем площадь ромба при помощи двух диагоналей. Умножаем длину первой диагонали (12 см) на длину второй (16 см) и делим это на 2 — получаем 96 см кв. (это площадь ромба).
Вычисляем высоту, зная размер стороны и площадь. Для этого 96 поделите на 10 — выходит 9,6 сантиметров — это окончательный ответ.
Рекомендую еще почитать о способах подсчета площади ромба.