Содержание материала
Рубрики
- 01 Задание (2022)
- 02 Задание (2022)
- 03 Задание (2022)
- 04 Задание (2016)
- 05 Задание (2022)
- 06 Задание (2022)
- 07 Задание (2022)
- 08 Задание (2022)
- 11 Задание (2022)
- 12 Задание (2022) (C1)
- 13 Задание (2022) (C2)
- 14 Задание (2022) (C3)
- 15 Задание (2022) (C4)
- 16 Задание (2022)
- 17 Задание (2022) (C6)
- 18 Задание (2022) (С7)
- АЛГЕБРАИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ
- База ЕГЭ Задание 19
- База ЕГЭ Задание 20
- БЕЗ РУБРИКИ
- ВИДЕОЛЕКЦИИ
- ВИДЕОТЕКА
- ВИДЕОУРОКИ
- Вопросы для повторения
- Диагностические работы
- Задание 01 (2016)
- Задание 02 (2016)
- Задание 03 (2016)
- ЗАДАЧИ С ПАРАМЕТРОМ
- Задачи с практическим содержанием
- ИНТЕГРАЛ
- Интерактивные модели
- ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
- Комбинаторика
- ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
- МГУ, ДВИ
- НОВОСТИ
- ОГЭ (ГИА) Задание 11
- ОГЭ (ГИА) Задание 15
- ОГЭ (ГИА) Задание 15
- ОГЭ (ГИА) Задание 24
- ОГЭ (ГИА) Задание 25
- ОНЛАЙН КУРСЫ
- Оплата
- ПЛАНИМЕТРИЯ
- ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
- ПОЛЕЗНЫЕ СОВЕТЫ
- ПРЕЗЕНТАЦИИ
- ПРОГРЕССИИ
- ПРОИЗВОДНАЯ
- РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ, НЕРАВЕНСТВА И СИСТЕМЫ
- СТЕРЕОМЕТРИЯ
- ТЕКСТОВЫЕ ЗАДАЧИ
- Теория вероятностей
- ТЕОРИЯ ЧИСЕЛ
- Тесты
- Тренировочные варианты
- ТРИГОНОМЕТРИЯ
- УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЕМ
- ФУНКЦИИ И ГРАФИКИ
Видео
Суть открытия
Пусть имеется уравнение высшей степени вида P (x) = 0, где P (x) есть многочлен, состоящий из a0xn + a1xn-1 + … + an-1x + an. При этом на практике будет оказываться, что все коэффициенты являются целыми числами. Рассмотрим два многочлена: P (x) = x 3 + 3 x 2 -2 x +2 и Q (x) = x -1. Нужно найти остаток от деления P (x) на Q (x). Этим остатком должно быть число, так как его степень будет меньше чем та, на что происходит деление.
Для решения примера нужно использовать деление в столбик. Первым действием необходимо подобрать выражение таким образом, чтобы при умножении его на x-1 получилась кубическая степень. Этим выражением будет икс в квадрате. После выполнения действия получится одночлен: x3 — x2. Подставив его под первый многочлен, можно получить меньшее на единицу порядка выражение: 4x2 — 2x.
Чтобы получить это уравнение x-1 необходимо умножить на 4x. Отсюда получается снова выражение с меньшей степенью: 4x2 — 4x. После вычитания образуется двучлен: 2 x +2. Для того чтобы от него избавиться x-1 следует умножить на двойку. В результате после вычитания получится остаток равный четырём.
Этот ответ на самом деле можно найти более простым способом используя определение Безу. Для рассматриваемого примера свободные коэффициенты в сумме будут давать: 1 + 3 — 2 + 2 = 4. Это число и является найденным остатком, получившимся после деления.
С помощью этой формулировки нахождение действительных корней любого уравнения выполнять совершенно несложно. Пусть эн будет корнем уравнения P (х) = 0. Тогда при подстановке его значения получится тождество — ноль равняется нулю. Это означает, что P (n) = 0, а вместе с функцией равный нулю и остаток при делении.
Таким образом, если удалось подобрать корень уравнения, то в соответствии с формулировкой Безу многочлен P (x) будет делиться на P (n) нацело. В этом и состоит главное применение теоремы Безу — решения примеров, состоящих из уравнений имеющие степени высокого порядка.
Фактически задача нахождения ответа в уравнениях высших степеней состоит в следующих шагах:
- Поиск корня n.
- Деление решения на двучлен x-n.
- Получение уравнения на порядок ниже.
Алгоритм повторяется до тех пор, пока уравнение не станет квадратным. При этом следует помнить, что если корень подходит, то деление в алгоритме будет осуществляться нацело.
Поэтому важным этапом является подбирание корня. Находить же его лучше всего используя схему Горнера.
Применение онлайн-калькулятора
Как бы ни облегчала расчёт теорема всё равно приходится выполнять определённые арифметические действия. Когда уравнение до четвёртого порядка, выполнить операции несложно и самостоятельно. Но чем больше показатель в формуле, тем сложнее выполнять вычисления и больше возникает вероятность допущения ошибки. При этом затрачивается и много времени.
Поэтому резонно для сложных заданий использовать автоматически расчёт уравнений. Выполнить его можно используя любой специализированный сервис — онлайн калькулятор. Теорема Безу предлагает алгоритм расчётов, который запрограммирован в исполняющем приложении. Доступ к интернет-порталам предлагающих такого рода услугу бесплатен. При этом от пользователя не требуется даже регистрации или указания какой-либо информации.
Необходимо просто зайти на страничку онлайн-калькулятора и ввести в предложенную сайтом форму исследуемое уравнение, а после запустить программу нажатием одной кнопки, например, «Рассчитать». Нет необходимости в скачивании или установки программ. Система сама выполнит все вычисления и выдаст ответ. Только в сети рунета существует несколько десятков таких расчётчиков. Из популярных среди пользователей можно выделить следующие:
- Math-solution. Основу сайта составляют различные приложения выполняющие вычисления. Кроме непосредственно решения, сервис предоставляет поэтапное описание действий. Подробное решение излагается в соответствии с принятой программой обучения в школе и вузах. Кроме этого, на сайте существует раздел «Книги». В нём каждый желающий сможет найти учебники, решебники и другую справочную информацию по математике или геометрии.
- Planetcalc. Этот сервис позволит вычислить ответ любой сложности соотношения многочленов. Особенностью его является простой интерфейс, не содержащий загромождения информации. Кроме этого, предложенный поэтапный расчёт сопровождается лаконичными объяснениями.
- Calc. Онлайн-калькулятор имеет интуитивно понятный интерфейс и всю необходимую теорию для понятия теоремы и возможностей её использования. На страничках сайта представлены примеры решений задач различной сложности с подробным описанием действий.
Решив несколько примеров с помощью онлайн-решателей, пользователь сможет самостоятельно научиться применять правила. Автоматические вычислители смогут как подтянуть знания, так и проверить выполненный расчёт.
Ведь возникновение ошибки при использовании приложения практически невозможно.