Алгоритм расчёта вещественных корней полиномов / Хабр

Рубрики

  • 01 Задание (2022)
  • 02 Задание (2022)
  • 03 Задание (2022)
  • 04 Задание (2016)
  • 05 Задание (2022)
  • 06 Задание (2022)
  • 07 Задание (2022)
  • 08 Задание (2022)
  • 11 Задание (2022)
  • 12 Задание (2022) (C1)
  • 13 Задание (2022) (C2)
  • 14 Задание (2022) (C3)
  • 15 Задание (2022) (C4)
  • 16 Задание (2022)
  • 17 Задание (2022) (C6)
  • 18 Задание (2022) (С7)
  • АЛГЕБРАИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ
  • База ЕГЭ Задание 19
  • База ЕГЭ Задание 20
  • БЕЗ РУБРИКИ
  • ВИДЕОЛЕКЦИИ
  • ВИДЕОТЕКА
  • ВИДЕОУРОКИ
  • Вопросы для повторения
  • Диагностические работы
  • Задание 01 (2016)
  • Задание 02 (2016)
  • Задание 03 (2016)
  • ЗАДАЧИ С ПАРАМЕТРОМ
  • Задачи с практическим содержанием
  • ИНТЕГРАЛ
  • Интерактивные модели
  • ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
  • Комбинаторика
  • ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
  • МГУ, ДВИ
  • НОВОСТИ
  • ОГЭ (ГИА) Задание 11
  • ОГЭ (ГИА) Задание 15
  • ОГЭ (ГИА) Задание 15
  • ОГЭ (ГИА) Задание 24
  • ОГЭ (ГИА) Задание 25
  • ОНЛАЙН КУРСЫ
  • Оплата
  • ПЛАНИМЕТРИЯ
  • ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
  • ПОЛЕЗНЫЕ СОВЕТЫ
  • ПРЕЗЕНТАЦИИ
  • ПРОГРЕССИИ
  • ПРОИЗВОДНАЯ
  • РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ, НЕРАВЕНСТВА И СИСТЕМЫ
  • СТЕРЕОМЕТРИЯ
  • ТЕКСТОВЫЕ ЗАДАЧИ
  • Теория вероятностей
  • ТЕОРИЯ ЧИСЕЛ
  • Тесты
  • Тренировочные варианты
  • ТРИГОНОМЕТРИЯ
  • УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЕМ
  • ФУНКЦИИ И ГРАФИКИ

Видео

Суть открытия

Пусть имеется уравнение высшей степени вида P (x) = 0, где P (x) есть многочлен, состоящий из a0xn + a1xn-1 + … + an-1x + an. При этом на практике будет оказываться, что все коэффициенты являются целыми числами. Рассмотрим два многочлена: P (x) = x 3 + 3 x 2 -2 x +2 и Q (x) = x -1. Нужно найти остаток от деления P (x) на Q (x). Этим остатком должно быть число, так как его степень будет меньше чем та, на что происходит деление.

Для решения примера нужно использовать деление в столбик. Первым действием необходимо подобрать выражение таким образом, чтобы при умножении его на x-1 получилась кубическая степень. Этим выражением будет икс в квадрате. После выполнения действия получится одночлен: x3 — x2. Подставив его под первый многочлен, можно получить меньшее на единицу порядка выражение: 4x2 — 2x.

Чтобы получить это уравнение x-1 необходимо умножить на 4x. Отсюда получается снова выражение с меньшей степенью: 4x2 — 4x. После вычитания образуется двучлен: 2 x +2. Для того чтобы от него избавиться x-1 следует умножить на двойку. В результате после вычитания получится остаток равный четырём.

Этот ответ на самом деле можно найти более простым способом используя определение Безу. Для рассматриваемого примера свободные коэффициенты в сумме будут давать: 1 + 3 — 2 + 2 = 4. Это число и является найденным остатком, получившимся после деления.

С помощью этой формулировки нахождение действительных корней любого уравнения выполнять совершенно несложно. Пусть эн будет корнем уравнения P (х) = 0. Тогда при подстановке его значения получится тождество — ноль равняется нулю. Это означает, что P (n) = 0, а вместе с функцией равный нулю и остаток при делении.

Таким образом, если удалось подобрать корень уравнения, то в соответствии с формулировкой Безу многочлен P (x) будет делиться на P (n) нацело. В этом и состоит главное применение теоремы Безу — решения примеров, состоящих из уравнений имеющие степени высокого порядка.

Фактически задача нахождения ответа в уравнениях высших степеней состоит в следующих шагах:

  1. Поиск корня n.
  2. Деление решения на двучлен x-n.
  3. Получение уравнения на порядок ниже.

Алгоритм повторяется до тех пор, пока уравнение не станет квадратным. При этом следует помнить, что если корень подходит, то деление в алгоритме будет осуществляться нацело.

Поэтому важным этапом является подбирание корня. Находить же его лучше всего используя схему Горнера.

Применение онлайн-калькулятора

Как бы ни облегчала расчёт теорема всё равно приходится выполнять определённые арифметические действия. Когда уравнение до четвёртого порядка, выполнить операции несложно и самостоятельно. Но чем больше показатель в формуле, тем сложнее выполнять вычисления и больше возникает вероятность допущения ошибки. При этом затрачивается и много времени.

Поэтому резонно для сложных заданий использовать автоматически расчёт уравнений. Выполнить его можно используя любой специализированный сервис — онлайн калькулятор. Теорема Безу предлагает алгоритм расчётов, который запрограммирован в исполняющем приложении. Доступ к интернет-порталам предлагающих такого рода услугу бесплатен. При этом от пользователя не требуется даже регистрации или указания какой-либо информации.

Необходимо просто зайти на страничку онлайн-калькулятора и ввести в предложенную сайтом форму исследуемое уравнение, а после запустить программу нажатием одной кнопки, например, «Рассчитать». Нет необходимости в скачивании или установки программ. Система сама выполнит все вычисления и выдаст ответ. Только в сети рунета существует несколько десятков таких расчётчиков. Из популярных среди пользователей можно выделить следующие:

  1. Math-solution. Основу сайта составляют различные приложения выполняющие вычисления. Кроме непосредственно решения, сервис предоставляет поэтапное описание действий. Подробное решение излагается в соответствии с принятой программой обучения в школе и вузах. Кроме этого, на сайте существует раздел «Книги». В нём каждый желающий сможет найти учебники, решебники и другую справочную информацию по математике или геометрии.
  2. Planetcalc. Этот сервис позволит вычислить ответ любой сложности соотношения многочленов. Особенностью его является простой интерфейс, не содержащий загромождения информации. Кроме этого, предложенный поэтапный расчёт сопровождается лаконичными объяснениями.
  3. Calc. Онлайн-калькулятор имеет интуитивно понятный интерфейс и всю необходимую теорию для понятия теоремы и возможностей её использования. На страничках сайта представлены примеры решений задач различной сложности с подробным описанием действий.

Решив несколько примеров с помощью онлайн-решателей, пользователь сможет самостоятельно научиться применять правила. Автоматические вычислители смогут как подтянуть знания, так и проверить выполненный расчёт.

Ведь возникновение ошибки при использовании приложения практически невозможно.

Теги

Популярные:

Последние:

Adblock
detector