§ Квадратичная функция. Как построить параболу

«Анатомия» квадратичной функции:

\(x_в\) и \(y_в\) – координаты вершины параболы. \(x_в\) можно найти с помощью формулы: \(x_в=\frac{-b}{2a}\). \(y_в\) можно найти подставив в формулу квадратичной функции вместо \(x\) значение \(x_в: y_в=ax_в^2+bx_в+с\) Ось симметрии проходит через вершину параболы и параллельна оси \(y\) (ординат). \(x_1\) и \(x_2\) – нули функции. Их можно найти, приравняв формулу функции к нулю и решив соответствующее квадратное уравнение.

Видео

Методы нахождения координат вершины

Очень часто функция квадратичного типа при решении задач может быть представлена в некотором виде, который следует при помощи математических преобразований привести в читабельную форму. Последний термин обозначает, что требуется преобразовать формулу параболы для удобного построения таблицы и схематического представления. Делается эта операция по следующему алгоритму на примере z=t^2 +4t+2:

  1. Приравнять к нулевому значению (квадратное уравнение): t^2 +4t+2=0.
  2. Выполнить подготовительную операцию по выделению квадрата: t^2 +4t+2+[2-2]=0.
  3. Выделить формулу сокращенного умножения — квадрат: (t+2)^2 -2=0.
  4. Перенести «-2» вправо, т. е. (t+2)^2=2.
  5. Найти вершину исходя из решения тождества без «-2».
  6. Определить ординату z: z=-(2), т. е. число из правой части выражения, умноженное на -1.
  7. Вычислить координату фокуса (смещение относительно начала координат): (t;z)=(-2;-2).

Методика позволяет найти фокус без дополнительных формул. Однако существует и другой способ определения вершины, где применяется производная функции:

  1. Определить производную: z’=2t+4.
  2. Приравнять z’ к нулевому значению: 2t+4=0.
  3. Найти корень: t=-2.
  4. Подставить в первоначальную функцию для нахождения ординаты, т. е. z=-2.
  5. Координата вершины: (-2;-2). Она совпадает со значением в предыдущем примере.

Существуют программные продукты для нахождения параметров параболы. Названия имеют английскую номенклатуру, т. е. «parabola».

Квадратичная функция подробнее

Квадратичная функция – это функция вида \( y=a{{x}^{2}}+bx+c\), где \( a\ne 0\), \( b\) и \( c\) ­– любые числа (они и называются коэффициентами). 

Число \( a\) называют старшим или первым коэффициентом такой функции, \( b\) – вторым коэффициентом, а \( c\) – свободным членом.

Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений\( E\left( y \right)\).

Какими могут быть значения аргумента квадратичной функции \( y=a{{x}^{2}}+bx+c\)? Правильно, любыми. Ведь в эту формулу можно подставить любое число (в отличии, например, от функции \( y=\frac{1}{x}\) – в нее нельзя подставить \( x=0\)).

Значит, область определения – все действительные числа:

\( D\left( y \right)=\mathbb{R}\) или \( D\left( y \right)=\left( -\infty ;+\infty \right)\).

А теперь множество значений. Все ли значения может принимать функция?

Достаточно рассмотреть самую простую квадратичную функцию \( y={{x}^{2}}\) \( \left( a=1,\text{ }b=0,\text{ }c=0 \right)~\), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.

Значит, эта функция всегда не меньше нуля.

А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.

Таким образом, можем написать для \( y={{x}^{2}}:E\left( y \right)=\left[ 0;+\infty \right)\).

В каждом отдельном случае область значений будет разная, но всегда – ограниченная.

Коэффициенты квадратичной функции

Давай разберем, на что влияют коэффициенты квадратичной функции.Начнем со старшего коэффициента.Будем рассматривать функции вида \( y=a{{x}^{2}}\) (\( b=0\), \( c=0\) – пусть не мешают).

Построим на одном рисунке графики нескольких функций: при \( a= -2,\text{ }-1,\frac{1}{2},\text{ }1,\text{ }3:\) 

Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?

Во-первых, это невозможно не заметить, если \( \displaystyle \mathbf{a}<\mathbf{0}\), ветви парабол направлены вниз, а если \( \displaystyle \mathbf{a}>\mathbf{0}\) – вверх.

Так, хорошо.

Значит, если парабола пересекает ось \( \displaystyle Ox\) в двух точках, то у нас два корня квадратного уравнения.

Если не пересекает – корней нет.

Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси \( \displaystyle Ox\) вершиной:

А что такое вершина параболы?

Примеры решения задач

Задача 1

Построить график функции y=x²-2x-1 x=-b/2a=-(-2)/2*1=1⇒y=1²-2*1-1=-2 Ветви параболы направлены вверх, так как a>0. Дополнительно берем несколько значений аргумента: x=2 ⇒ y=-1;x=3 ⇒ y=2;x=4 ⇒ y=7. Строим график.

Задача 2

Построить график функции y=-2x²+4x x=-b/2a=-4/2*(-2)=1⇒y=-2*1²+4*1=2 Ветви параболы направлены вниз, так как a<0. Находим нули функции, решая уравнение: -2x²+4x=0 x(-2x+4)=0 x=,-2x+4=⇒-2x=-4⇒x=2. Дополнительно возьмем одно значение: x=3 ⇒ y=-6 Строим график

Теги

Популярные:

Последние: