Содержание материала
Введите квадратное уравнение
Решим квадратное уравнение a*x2 + b*x + c = 0, для этого введите a, b и c.
Что умеет данный калькулятор?
- Решает полные, неполные и приведённые квадратные уравнения
- Находит дискриминант и корни квадратного уравнения
- Составляет формулу квадратного уравнения
- Находит сумму корней
- Находит произведение корней
- Теорема и формулы Виета
Важно Коэффициент a не может быть равен нулю. Если a=0, то уравнение будет линейным (не квадратным). Чтобы получить решение неполного квадратного уравнения, надо просто приравнять b к нулю
Видео
Понятие дискриминанта
Дискриминант квадратного уравнения — это выражение, равное b2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.
Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Взаимосвязь параметра
Объяснение дискриминанта имеет и графическое обоснование. Физически задача заключается в комплексном подходе установления взаимосвязи. Фактически это фиксирование нулей параболы уравнения, то есть точек, в которой она пересекает ось абсциссы. Знак при переменной в квадрате будет определять положение веток параболы. Они будут идти вверх при a > 0, и вниз, если a < 0.
Исходя из этого, дискриминант равняется отношению суммы или разности числового коэффициента, стоящего возле неизвестного в первой степени с корнем квадратным из b 2 — 4 ac к удвоенному произведению первого коэффициента в уравнениях x1 = (- b + √ b 2 — 4 ac) / 2a; x2 = (- b — √ b 2 — 4 ac) / 2a. Подкоренное выражение называют формулой сокращённого дискриминанта.
Дискриминант при нахождении корней уравнения может принимать три значения:
- Отрицательное. В случае, когда он меньше нуля, точный квадрат должен равняться числу с минусом, чего не может быть из-за свойств квадратной степени. Поэтому при таком положении вещей решений или действительных корней у уравнения нет. График уравнения не пересекает ось абсциссы.
- Равное нулю. Это состояние характеризуется уравнением вида: (2 am + b)2 = 0. Так как квадрат числа может быть равен нулю, только если это число нулевое, то рассматриваемое уравнение можно переписать как m = — b / 2a. Это и есть упрощённая формула при дискриминанте, равному 0. На графике существует лишь одна точка пересечения с осью абсциссы.
- Положительное. Это наиболее распространённый случай и самый тяжёлый для проведения расчётов. При нём из обеих частей уравнения теоремы (2 am + b) 2 = b 2 — 4 ac надо извлечь квадратный корень. В итоге получится 2am + b =± √D. Тут следует отметить следующее: минус возникает из-за того, что возводимое в квадрат число может быть как положительное, так и отрицательное. Например, 92 = 81 и -92 = 81. Из этого выражения можно выразить неизвестное. Оно будет равняться половинному значению m = (-b ± √D) / 2a. Парабола пересекает ось абсцисс в двух точках.
Последнее выражение является формулой корней квадратного уравнения. Именно с её помощью могут решаться равенства, в степени которых стоит двойка. Через дискриминант можно вычислять корни и уравнений больших порядков. Для этого используются приёмы понижения степени до квадратного. Но эти операции учащиеся начинают изучать на уроках в выпускном классе, когда проходят решение уравнений n-го порядка.
Примеры решения квадратных уравнений с помощью дискриминанта
Пример 1. Решить уравнение: 3x2 — 4x + 2 = 0.
Как решаем:
- Определим коэффициенты: a = 3, b = -4, c = 2.
- Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 3 * 2 = 16 — 24 = -8.
Ответ: D < 0, корней нет.
Пример 2. Решить уравнение: x2 — 6x + 9 = 0.
Как решаем:
- Определим коэффициенты: a = 1, b = -6, c = 9.
- Найдем дискриминант: D = b2 — 4ac = (-6)2 — 4 * 1 * 9 = 36 — 36 = 0.
D = 0, значит уравнение имеет один корень:
Ответ: корень уравнения 3.
Пример 3. Решить уравнение: x2 — 4x — 5 = 0.
Как решаем:
- Определим коэффициенты: a = 1, b = -4, c = -5.
- Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 1 * (-5) = 16 + 20 = 36.
D > 0, значит уравнение имеет два корня:
x1 = (4 + 6) : 2 = 5,
x2 = (4 — 6) : 2 = -1.
Ответ: два корня x1 = 5, x2 = -1.
Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.